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Preface

In this book the high-frequency processes, ie., oscillations and waves in mag-
netically ordered substances: ferromagnets, antiferromagnets, and ferrimagnets
(ferrites) are treated. This subject is of interest, at least, from three points of view:
(1) as a part of the fundamental problem of interaction of electromagnetic field
with matter, (ii) as a basis for designing nonreciprocal and controllable devices
that are used now (and will be used more widely in the future) in microwave and
optical systems in radar, Space communication, radioastronomy, etc., (iii) as a
technique for measuring the parameters of magnetic materials.

The problems studied in the book include ferromagnetic and antiferromagnetic
resonances, spin waves, nonlinear processes, and high-frequency manifestations
of interactions between the magnetic system and other systems of magnetically
ordered substances (crystal lattice, charge carriers). Fundamentals of electrody-
namics of such substances and principles of their applications in microwave and
optical engineering are considered, as well. These problems are treated mainly
in terms of classical theory using the Maxwell equations and the Landau—Lifshitz
equation of motion of magnetization. It is well known that the magnetic order-
ing is a result of the quantum-mechanical exchange interaction, which cannot
be understood in the framework of the classical theory. Nevertheless, the exis-
tence of this interaction does not prevent but, on the contrary, makes possible and
reasonable the classical treatment of dynamic processes in magnetically ordered
substances. The quantum-mechanical approach should be used (and is used in
this book) only in the study of relaxation processes, which determine the energy
losses of magnetic oscillations and waves.

The present book differs from other monographs on this subject in that it treats
successively, in a single style, and on the up-to-date level all the main topics of
the problem, in a form comprehensible for readers not skilled in mathematics and
theoretical physics. The book is intended to be a manual for everybody entering the
field of magnetic dynamics: scientists as well as engineers, designers of magnetic
materials and devices, and students. The authors hope, however, that it will be
used as a reference book by scientists and engineers that already work in the field.

The readers are supposed to have studied mathematics and experimental physics
to an extent of usual college courses but may have, perhaps, forgotten some parts
of them. Therefore, the background information needed to understand the topics
treated in the book is briefly reviewed. Sections 1.1, 2.2, 3.1, and partly, 8.1 and
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12.1 are devoted to this. So, no other manuals are needed to understand completely
the material presented in the book. (This does not mean, of course, that the study
of other books and articles is not recommended.)

The authors tried not only to present some useful theoretical results but to teach
the reader to obtain, at least, some of them. Therefore, most of the formulae are
derived in detail, so that the reader would be able to reproduce the derivation.
The book contains no formulated problems. (The authors’ experience tells that
not all readers solve them.) Nevertheless, an active study of the book is strongly
recommended. It can consist in deriving the formulae given in the book, carrying
out the estimates, and in comparing different results. All the data needed for this
the reader can obtain from the text and appendices.

The experimental techniques are not described in the book, they should be mas-
tered in laboratories. But the experimental results are cited, especially when they
supplement considerably the existing theories or contradict them. The experiment
is present ‘invisibly’ in the book written by experimentalists.

In the selection of topics to be considered we tried to use the following criteria:
generality, timeliness, and pedagogical value. When these criteria came into
conflict, the decision could not be but subjective. Moreover, some topics satisfying
all mentioned criteria have not been included into the book. Among them there
are spin waves in antiferromagnets, interaction of spin waves with light, and such
nonlinear effects as magnetic envelope solitons and chaos.

The CGS (Gaussian) units are used throughout the book because they are most
suitable for describing the physical, in any case the magnetic, processes. Often
(when this cannot lead to uncertainty) the units of some cited values are omitted,
as is common in lectures and discussions. The relations between CGS and S units
are listed in Appendix A.

The list of references contains, in addition to all sources cited in the text, a
few good books and papers not referred to but worth becoming acquainted with in
studying the problems treated in the book, as wel as some of the above-mentioned
problems, which were not included in the book. Neither the completeness of the
list of references nor the elucidation of priorities was aimed.

The entire book is written in collaboration by both authors, and they are both
responsible for all mistakes. We will be grateful to the readers who will kindly
attract our attention to them.

We are very grateful to all our colleagues and friends who, in the course of
our long work on this book, improved the content by their critical comments
and advices. We regret that it is impossible to mention all of them here. We
are especially thankful to the late Professor G. V. Skrotskii, whose advices were
very valuable. The authors have the pleasure to thank N. K. Selyanina and
V. G. Grigor’yants, whose comments resulted in an essential improvement of the
book. We are grateful to the staff of the Editorial Office at the Ioffe Physico-
Technical Institute for the skillful preparation of the camera-ready copy of the
book.
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Isotropic ferromagnet magnetized to

saturation

L s

1.1 Ferromagnetism

The aim of this book is to study the dynamical magnetic properties of magnetically
ordered substances. But before treating the dynamical properties, we review in
this section the basic concepts of ferromagnetism. We assume the reader to be
somewhat familiar with them and only review the most important aspects.!

All substances can be classified as diamagnetic and paramagnetic. The latter
contain elementary magnetic moments, which can be oriented by magnetic field,
what leads to magnetization in the direction of the field. However, in some para-
magnetic substances the orientation of magnetic moments occurs spontaneously,
in the absence of an external magnetic field. Such substances are called mag-
netically ordered. The simplest type of them is a ferromagnet. All elementary
magnetic moments tend to align, in this case, parallel to each other, resulting in
large spontaneous magnetization.

Two points should be emphasized. First, the thermal motion hinders the orien-
tation of magnetic moments. Therefore, the spontaneous parallel order is nearly
ideal only at low temperatures. At a temperature T¢ called the Curie temperature
the thermal motion destroys completely the magnetic order.

Second, the directions of spontaneous magnetization, in the absence of external
magnetic field or in a weak field, (in not very small samples) are not parallel to
each other throughout the whole sample. The sample is divided into domains,
inside of which these directions are approximately the same, but change rather
quickly in going from one domain to another.

! For an overview of the basic concepts of ferromagnetism the textbooks [227, 70] are recommended, -
and for a more thorough study of the theory of ferromagnetism the monographs [246, 226, 201] can
be used.




2 1 Isotropic ferromagnet magnetized to saturation

1.1.1 Elementary magnetic moments

Elementary magnetic moments, mentioned above, are the spin and the orbital
magnetic moments of electrons. The net moments of all inner (filled) electron
shells of atoms are equal to zero. Contributions to paramagnetism appear only
from the partly filled 3d, 4d, 5d, or 4f shells and also from outer s electrons. In
jonic crystals the total, spin plus orbital, magnetic moments of ions can, generally
speaking, be regarded as elementary magnetic moments. However, the orbital
moments of some 3d ions are equal to zero (the ions in S state), and the moments
of some other ions are quenched (i.e., the lowest energy level of the ion is an
orbital singlet, see Section 13.1). In these cases, the spin moments of ions are the
elementary magnetic moments.

Magnetic moments in dielectrics and semiconductors can be regarded as lo-
calized on crystal-lattice sites. In metals, the magnetic moments of 3d and 4f
shells are only partly localized (to a greater degree, in 4f metals), and the de-
localized magnetic-moment density of conduction electrons is to be taken into
account [445].

Let us, first, consider the localized magnetic moments as classical magnetic
dipoles. Such a dipole with the moment My, situated at a point f, produces at a
point f' the magnetic field [399]

_ 3yrypriy My

Hy
5 3
Tss Tsg

(1.1)
where 75 is a radius-vector connecting points f and f’. A force moment acting
on another dipole, with a moment 21, situated at a point f’, is
Ty = Mg X Hy.. (1.2)

The energy of interaction of the two dipoles is [70]
3y ) MRyryp) | IRy

i 3 ‘

ff £

Effr =-MpHp = — (1.3)
The energy of magnetic (dipole-dipole) interaction of all magnetic moments of a
sample is the double sum of (1.3) over all f and f’ except f = f'. This energy,
as we shall soon see, is in most cases far too small to be the reason of magnetic
ordering.

To begin the elucidation of this reason, we point out, first of all, that the elemen-
tary magnetic moments, being microscopic objects, obey the laws of quantum me-
chanics. The quantum mechanics (e.g., [243, 336|) treats all dynamical variables,
including magnetic moments, as operators acting on appropriate wave functions.
The quantities that can be observed are the eigenvalues of these operators.

The eigenvalues of the projection of a moment of momentum (or an angular
momentum) onto a certain axis, chosen as an axis of quantization, are discrete
quantities, the nearest of which differ by h. They are usually expressed in units
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of h. Then, e.g., for spin angular momenta
{8.}=5,5-1,...,(=9) (1.4)

where braces denote the eigenvalues of an operator inside them, and S is the
spin quantum number, which can be an integer or half-integer. For an electron,
S =1/2,and {S.} = +1/2. For the Fe** ion (which is the main magnetic ion
in most magnetic materials), S = 5/2, and {S.} = 5/2,3/2,...,(=5/2). The
projections L. of the orbital angular momentum are quantized in an analogous
manner, but the orbital quantum numbers are only integers.

The projections of the angular-momentum operator onto z- and y-axes have
no definite eigenvalues in the representation in which the z-axis is the axis of
quantization. The eigenvalues of the squared vector-length operator are (e.g., for
a spin angular momentum)

{82} = S(S+1). (1.5)

The total angular momentum J is the geometric sum of spin and orbital angular
momenta. The eigenvalues of its projection .J, are quantized analogously to (1.4),
and the quantum number J, for given values of S and L, can take the values

J=(S+L),(S+L-1),...,|S - L|. (1.6)

The magnetic-moment operators, the spin 9518, the orbital 2t 1, and the total
9N, are proportional to the corresponding angular momenta. Magnetic moments,
as distinct from angular momenta, are expressed in absolute units. Therefore,

95‘5 = —’)’sﬁS’ (1.7)
where i = h/2 is the Plank’s constant, and the gyromagnetic ratio

_ 9sleol
57 2mec’

(1.8)

Here ¢y is the charge of an electron, m, is its mass at rest, ¢ is the velocity of
light, and g is the spectroscopic splitting factor (Lande factor or g-factor) for an
electron spin. Its value, given by the quantum electrodynamics, is

2
gs:2(1+%—0.328%) (1.9)

where o = e3/(hc) ~ 1/137is the fine-structure constant. The minus signin (1.7)
shows that the magnetic moment and the angular momentum of an electron are
antiparallel to each other, the value of s being positive.

An expression analogous to (1.7) can be written for orbital magnetic moment
as well, but in this case g; = 1. The total magnetic moment

M = —hd = _gleol 5 (1.10)

2mec
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The g-factor in (1.10) depends on the quantum numbers S, L, and J. Assuming
gs =2, we get [1]
3 S(S+1)—-L(L+1)

Wt T ()

It follows from (1.7) and (1.10) that the magnetic moments are quantized in the
same way as the angular momenta. In particular,

{M,} = yhJ,yh(J = 1),....(=vhJ). (1.12)
The difference between two successive eigenvalues of M, are
oM, = vh = gus (1.13)

where
- ‘e() | h
B 2mec

(1.14)

is the Bohr magneton.

1.1.2 Paramagnetism

The states with different {9, } values are degenerate in the absence of an external
magnetic field. When the magnetic field H is applied, there appears the potential
energy of a magnetic moment in this field (the Zeeman energy)

ez = —NH (1.15)

and the degeneracy is removed. There are then (2J + 1) equidistant energy levels
separated by intervals

be = vhH. (1.16)

Transitions between these levels, with absorption of electromagnetic energy quanta
hw, are called electron paramagnetic, or electron spin, resonance (e.g., [1, 15]).
As the transitions only between the neighboring levels are allowed by the selection
rules [15], the resonance condition is

w=7HEMH (1.17)
2mec
The difference in populations of the levels with different {ﬁjtz} results in the
appearance of the net moment in the direction of the field H. The calculation, with
the use of general formulae of quantum statistics [244], leads to the expression for
the magnetization (the net moment per unit volume) [370, 24]

MOH)
NkT

M=M°BJ< (1.18)
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FIGURE 1.1
Brillouin functions. Numbers by the curves indicate J values.

where B(z) is the Brillouin function

2
By(zx) = Jz; : coth (22j 13:) - %coth (%m) (1.19)

M® = ~RhJN is the saturation magnetization, N is the number of magnetic
moments in a unit volume, and « is the Boltzmann constant.

The plots of the Brillouin function (1.19) are shown in Figure 1.1. When
x — 00, i.e., in very high magnetic fields or at very low temperatures, B;(z) — 1,
and all magnetic moments are oriented in the direction of the field. For small z,
expanding B(z) in a power series, we obtain from (1.18) that M = xpH. The
paramagnetic susceptibility xp, which does not depend on H in this limiting case,

x—l

FIGURE 1.2

Reciprocal of susceptibility versus temperature: curve 1 relates to paramagnet (Curie law),
curve 2 to ferromagnet (Curie-Weiss law), curve 3 to antiferromagnet, curve 4 to ferrimag-
net.
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can be written as

Xp = (1.20)

N Q

where
1 h)?
C= §J(J+1)(7—)N (1.21)
K
is the Curie constant, and (1.20) is the Curie law (Figure 1.2).

1.1.3 Weiss theory

In ferromagnets large values of the magnetization, nearly equal to the saturation
magnetization M, are observed at not very low teraperatures and in not very high
fields. The formal explanation of this fact was presented by Weiss as early as in
1907. He supposed that, in addition to the external field H, a high internal (he
named it ‘molecular’) field

Hg =AM (1.22)

acts on the magnetic moments of a ferromagnet. Here A is a large constant, the
physical nature of which Weiss was not able to explain.
Substituting H + HEg for H in (1.17), we obtain

MO
M = M°B; [ T(H+ ‘\M)] . (1.23)

Nk

It should be noted that Weiss used the classical Langevin (see, e.g., [70]) theory of
paramagnetism. We, following [70, 370], have replaced it by the above-mentioned
Brillouin approach.

NXT X
A(MO)2

_AA,;I—O 1 By (x)

FIGURE 1.3
Graphical solution of equation (1.23) for spontaneous magnetization of a ferromagnet.

Solving the transcendental equation (1.23) for A in the most interesting case
of H = 0, we see (Figure 1.3) that there is a nontrivial solution M # 0if T < Tc
where

Tec = AC (1.24)



1.1 Ferromagnetism 7

and C is the Curie constant (1.21). The temperature T¢ is the Curie point, and
M is the spontaneous magnetization of a ferromagnet.

At T > T¢ the spontaneous magnetization is equal to zero, and the argument
of the Brillouin function becomes small. Then, using the expansion of B;(z) in
a power series, we obtain the susceptibility

_C
CT-Tc
This is the Curie—Weiss law (Figure 1.2).

Xf (1.25)

1.1.4 Exchange interaction

The magnetic interaction of elementary magnetic moments cannot be the cause of
magnetic ordering and hence of the spontaneous magnetization of a ferromagnet,
at least not for common ferromagnets with not extremely low Curie temperatures.
This follows from the comparison of the thermal energy xT¢, which destroys
the ferromagnetic order, with the energy of magnetic interaction of two magnetic
dipoles. The former is of the order of 10~1°—10~13 (if Tc = 10—1000 K),
whereas the latter, according to (1.3) and (1.11), is of the order of u} /a® ~ 1018
(here a ~ 3 x 1078 is the mean distance between magnetic moments).

The energy e3/a of the electrostatic (Coulomb) interaction of two electrons
at the same distance a is of the order of 10~!!. Thus, even a small fraction of
this energy would be enough to give the observed values of T¢. It is known
from quantum mechanics (e.g., [243, 336]) that the form of a wave function
and, consequently, the mean energy of the Coulomb interaction of two electrons
depend on the mutual orientation of their spins. The part of the Coulomb energy
that depends on this orientation is called exchange energy. This energy is the cause
of magnetic ordering. In ferromagnets it is minimized at parallel orientation of all
electronic spin moments of 3d or 4f shells. Such was the explanation of the nature
of ferromagnetism proposed in 1928 independently and almost simultaneously
by Frenkel [130] and Heisenberg [178].

Dirac [101] showed that the energy operator (Hamiltonian) of the exchange
interaction between two particles with spin angular momenta S; and S, can be
written in the form

Hex = =211 2(r12)81 82 (1.26)

where I} 3(712) is the exchange integral. It decreases quickly with increasing
distance 712 between the particles.

In many ferromagnets, as well as in antiferromagnetic and ferrimagnetic sub-
stances (Chapter 3), the interacting particles are situated at such large distances
from each other that the above-considered exchange interaction (referred to as di-
rect exchange interaction) cannot be responsible for magnetic ordering. Different
mechanisms of indirect exchange interaction, in which some other particles take
part, must be operating in such cases. In ionic crystals, the exchange interaction of
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cation spins via the anions situated between them [ 18] is the dominant mechanism
(Section 3.1). In metals (Section 14.2), the interaction via conduction electrons is
of the greatest importance. In both these cases, the Hamiltonian can be approxi-
mated by the Dirac formula (1.26). The real mechanism of interaction determines
the value of the exchange integral and its dependence on 7y,.

A system of spin magnetic moments, localized on crystal-lattice sites and in-
teracting with each other according to the Hamiltonian (1.26), is the Heisenberg—
Dirac—Van Vleck model (often referred to, briefly, as Heisenberg model) of a
magnetically ordered substance, in particular, of a ferromagnet if the exchange
integral in (1.26) I » > 0. To generalize this model we have to take into consid-
eration the weaker interactions: the magnetic (dipole~dipole) interaction of spin
magnetic moments and the Zeeman interaction with the external magnetic field
(Section 7.4).

Two important assumptions are made in the Heisenberg model: (i) the spin
magnetic moments are assumed to be completely localized, and (ii) orbital mag-
netic moments are ignored. The first assumption is satisfied for magnetically
ordered dielectrics and semiconductors. It is poorly satisfied for metals; the zone
model (e.g., [445]) should be used in this case.

The second assumption is satisfied perfectly for ferromagnets with ions in
S state, and the stronger the quenching of orbital momenta (if they are present) the
better. When the quenching is sufficiently strong, the weak (but still important)
influence of orbital moments can be taken into account in the framework of the
generalized Heisenberg model. It is assumed, first, that the value of v in the
Zeeman term of the Hamiltonian (Section 7.4) differs from the spin value s
given by (1.9). Second, a term describing the magnetocrystalline anisotropy (the
main cause of which is the spin—orbital interaction, Section 2.2) is added into the
Hamiltonian.

In magnetically ordered substances with 4f (rare-earth) ions, the quenching of
orbital angular momenta does not take place, and the spin—orbital interaction,
which combines spin and orbital angular momenta in total angular momenta J,is
strong. Nevertheless, the Heisenberg model may be used for such substances, but
the total angular momenta J must be substituted for spin angular momenta S.

Some other topics of the theory of magnetism will be considered below when
the need for them arises.

1.2 Equation of motion of magnetization

To describe some phenomena in ferromagnets, in particular, the dynamical pro-
cesses we are interested in, the continuum approach can be used. Applying it, we
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digress from the microscopic picture of the ferromagnet and use the magnetization

_ Zay M
M = =4 (1.27)
as a quantity characteristic of its state (3, 2 is the magnetic moment of a
small but macroscopic volume AV'). Vector M is just the quantity that enters the
equations of macroscopic electrodynamics (Chapter 4).

The continuum approach allows one to use the classical theory. Exchange
interaction, which is a quantum-mechanical effect, must be postulated now. If the
magnetization M is uniform or changes in space slowly, the Weiss ‘molecular’
field (1.22)is sufficient to allow for this interaction. In the case of strong coordinate
dependence of M, an additional field is to be used, which describes the increase
of the exchange energy when the neighboring spin moments are not parallel to
each other (Section 7.1).

In the classical treatment of dynamic processes in a ferromagnet, the equations
of macroscopic electrodynamics should be supplemented by the material relations
(Section 4.1), which express the dependence, in our case, of the magnetization
M on the magnetic field H for the particular substance. The equation of motion
of the magnetization can be used as such arelation. In the framework of a classical
theory this equation is to be postulated.

The equation of motion of magnetization was proposed by Landau and Lif-
shitz [241] in 1935. We shall consider this equation, in a general form, in Sec-
tion 2.1. Now we present a classical ‘derivation’ of it (which cannot be strict, of
course) for a special case of uniform oscillations of magnetization in an isotropic
ferromagnet.

Suppose the ferromagnet to be a sum of classical tops (the nonstrictness consists
just of this assumption) with angular momenta J and magnetic moments 91. The
equation of motion of the top, according to (1.2), can be written as [399]

WL —omx H. (1.28)
ot
It has been taken into account that J is expressed in units of & and 9T, in absolute
units. Multiplying (1.28) by the number NV of tops in a unit volume and using the
general quantum-mechanical relation (1.10), we obtain the equation of motion of
the magnetization

oM

ot

This equation does not allow for ‘losses’, i.e., for the dissipation of magnetic

energy. The ways of phenomenological allowance for it are considered in Sec-

tion 1.4, and the physical processes that result in it will be discussed in Chapters 11
and 13.

In deducing (1.29) we have ignored the exchange interaction. Butitis easy to see

that the ‘molecular’ field (1.22) does not enter (1.29). The above-mentioned addi-

tional exchange field (that arises when M is nonuniform) will enter the equation

= -—yM x H. (1.29)
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of motion (Section 7.1). Thus, (1.29) is valid strictly for uniform magnetization
and approximately, if M varies in space sufficiently slowly.

The quantity vy in (1.29), being a characteristic of the collective motion of
magnetic moments, should not be and is not equal to the value of v for the same
ions either in the free state or in a paramagnetic crystal. In the framework of
classical theory, v is to be regarded as a parameter the value of which must be
found from experiment. It is clear, however, that the difference between an actual
value of 7y and its spin value (1.8) is due to the influence of the orbital magnetic
moments. Indeed, the g-factor (related to v by (1.10)) is very near to its spin value
of 2 in materials in which all the magnetic ions are in S state, for example, in
yttrium iron garnet (YIG) Y3FesO; [138] and in lithium ferrite Lig sFe; sO4 [297].

It is worth noting that the influence of orbital moments results in g values, found
from gyromagnetic (Barnett or Einstein-De Haas) experiments (e.g., [70]) which
are less than 2. At the same time, this influence leads to the values of g-factor
in (1.29) that are greater than 2. The difference was explained by Kittel [227]
and Van Vieck [418]. They took into consideration that vin (1.29) is the ratio of the
total magnetic moment to the spin angular momentum, whereas - in the mentioned
gyromagnetic experiments is the ratio of the same total magnetic moment but to
the total angular momentum.

An important feature of the equation of motion (1.29) is that it ensures the
conservation of the vector M length. Indeed, multiplying both sides of (1.29)
by M scalarly, we get

0 22

M =0 (1.30)

If we regard M as a vector with one end fastened, the other end, according

to (1.30), will move on the surface of a sphere. Such movement is called precession

of the magnetization. In the case of cylindrical symmetry, the end of the vector M

moves along a circle (circular precession). In other cases, its trajectory is more
complicated.

1.3 High-frequency magnetic susceptibility

Let us consider the oscillations of magnetization at some point of a ferromagnet
under the influence of a given internal ac magnetic field at the same point. Having
solved this problem, we shall find the high-frequency magnetic susceptibility of a
ferromagnet.

We take the magnetic field and magnetization in (1.29) to be the sums of steady
and alternating parts:

H=Hy+h., M=M;+m. (131)
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and assume that
he < Hy m< M, (1.32)

This assumption will be retained in all first eight chapters.

Substitute the sums (1.31) into (1.29) and, allowing for conditions (1.32), use
the method of successive approximations. In the zero approximation, retaining
in (1.29) only steady components, we obtain

My x Hy = 0. (1.33)

This expression determines the equilibrium direction of the magnetization. In
the considered case of an isotropic ferromagnet this direction coincides with the
direction of the internal magnetic field Hy. The length of the vector My is, of
course, not determined by (1.33), and, in the framework of considered theory,
should be regarded as known quantity.

In the first approximation, neglecting the products of ac quantities and taking
into account (1.33), we obtain

om..
ot

The derivation of this equation is called linearization of the equation of motion.

+ym. x Hy=—yMy X h.. (1.34)

1.3.1 Solution of the linearized equation of motion

We shall solve (1.34) assuming the harmonic (sinusoidal) time dependence of h....
As the equation is linear, the time dependence of ... will be also harmonic. Using
the method of complex amplitudes (e.g., [321]), we introduce complex variables

m = mexp(iwt) h = hexp(iwt) (1.35)

the real parts of which are m.. and k... The complex vector quantities 7 and h
in (1.35) are the complex amplitudes of the vectors m .. and h... They satisfy the
equation

iwm + ym x Hy = —yM, x h. (1.36)

Projecting (1.36) onto the axes of a Cartesian coordinate system, with the z-axis
coinciding with the direction of Hy and M, we get

iwmg + vyHomy = vyMoh,
—vHom, + iwmy = —yMoh,
iwm, = 0. (1.37)
The solution of the system (1.37) is

Mg = Xhy +iXxahy my = —ixohs + Xhy m, =0 (1.38)
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’)’MowH ’}’M()w
== = - 1.39
w} —w? Xe vl —w? (1.39)
where the following notation is used:
wy = ’yHo. (140)

Expressions (1.38) and (1.39) were obtained first by Polder [319]. They can be
written in a tensor form

m=Yxh (1.41)

where the high-frequency magnetic susceptibility ‘)_(' is a nonsymmetric second-
rank tensor (e.g., [273]):

X ixe 0
X=|-ixa x 0/ (1.42)
0 0 0

The solution (1.38) can be written, as well, in a vector form
m =yxh, +ih; x G, (1.43)
where h) = xoh, + Yohy = h — 2zoh. and
Gn = zoXa (1.44)

is the magnetic gyration vector (g, Yo, and 2o are the unit vectors directed along
the corresponding axes).

1.3.2 Peculiarities of the susceptibility tensor

In the considered case of an isotropic and lossless ferromagnet, magnetized to sat-
uration, the longitudinal component of the ac field does not produce the ac magne-
tization. The transverse ac field h; excites not only the magnetization component
parallel to the field, but also a component that is perpendicular to it. The latter,
according to the factors i in (1.38) or (1.42), has a phase shift of 7 /2 with respect
to h . Such property of a medium, caused by nonsymmetry of the susceptibility
tensor, is called gyrotropy. It should be noted that there exist media in which the
electric susceptibility in the presence of a steady magnetic field becomes a non-
symmetric tensor. All substances containing magnetic ions (i.e., ions with partly
filled 3d or 4f shells), in particular, ferromagnets, belong to such media. Their
electric gyrotropy results in Faraday and Kerr effects at optical frequencies [246].
In our case the magnetic susceptibility tensor contains antisymmetric components
and hence the gyrotropy may be called magnetic. In ferromagnets it dominates at
microwave and far infrared frequencies.

Thus, the nonsymmetry of the magnetic susceptibility tensor is the first pecu-
liarity of the obtained solution of the equation of motion. The second one is the
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FIGURE 14
Dependence of the susceptibility-tensor components on frequency w (Hy = const) and

steady magnetic field Hy (w = const).

resonant dependence of the components of this tensor on frequency w and mag-
netic field Hy. In the idealized case of a lossless ferromagnet, considered in this
section, these components grow unlimitedly when w or Hy approaches the pole

w =wy = vHp. (1.45)

The dependence of x and x, onw and Hy is shown in Figure 1.4.

The resonant dependence of the tensor Y components results in the phenomenon
of ferromagnetic resonance, i.e., of the resonant absorption of electromagnetic en-
ergy in a ferromagnetic sample. This phenomenon was predicted as early as in
1912 by Arkadyev [22] on a classical model. In 1923 Dorfman [102] pointed out
the possibility of it on a quantum model, but without allowance for spin (or ex-
change) nature of ferromagnetism because the electron spin was discovered only
in 1925 and the nature of ferromagnetism was explained in 1928. The first theory
of ferromagnetic resonance based on the correct understanding of ferromagnetism
was proposed by Landau and Lifshitz in 1935 [241]. Experimentally, ferromag-
netic resonance was discovered in 1946 by Griffiths [149] and, independently but
somewhat later, by Zavoiskii [461].

An important contribution to the theory of ferromagnetic resonance was made
by Kittel [220]. He showed that the ferromagnetic-resonance frequency (i.e.,
the frequency at which the maximal absorption of electromagnetic energy by a
ferromagnetic sample occurs) is not at all the frequency (1.45), and it depends
essentially on the sample shape. This dependence will be treated in Section 1.5.

The third peculiarity of the solution of the equation of motion (1.36), i.e.,
of the ac magnetization in a ferromagnet, is that the resonant behavior of the
oscillation amplitudes occurs only under the influence of an ac magnetic field
circular component with right-hand rotation (relative to the direction of Mj).
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The circular components of ac field and ac magnetization are defined as
hy = hy £ihy my = mg £ imy. (1.46)

If the complex amplitude of a vector, e.g., m... has only a component m ., then
it is a transverse vector (relative to the z-axis) circularly polarized with right-
hand rotation. Indeed, from m_ = O it follows that m, = —im.. Let the
x component of the real vector m ., (the complex amplitude of which is m) have
the form m.., = mgcoswt. Then m., = Re[—imgexp(iwt)] = mosinwt.
These expressions for m.. . and m. , mean that the transverse vector m.. rotates
in the zy plane, taking the shortest way from the positive semiaxis z to the positive
semiaxis y. This is just the definition of the vector m.., circular polarization with
the right-hand direction of rotation relative to the 2-axis. (This definition is
equivalent to the following: the tip of the vector is moving as the head of a right-
hand screw that shifts in a given direction.) It can be shown in the same manner
that, if there is only the component m_, i.e., m, = im., then the vector m.., is
circularly polarized with the left-hand rotation.
Thus, the relations between the complex amplitudes

my = Fim, (1.47)

correspond to circular polarization of the real vector with the right-hand (upper
sign) or left-hand (lower sign) rotation.
From (1.46), (1.38), and (1.39) it follows that

my = xthy (1.48)
where
¥ Mo
Xt =X EXe=—7— (1.49)
wH Fw

So, the component b produces only m., and ~2_ produces only m_. In other
words, in the variables hy, h_, h, and my, n._, m, the susceptibility tensor
becomes diagonal, with components x4+, x—, and x, = 0. It is seen from (1.48)
and (1.49) that only the magnetization component m ., which is excited by the
field component h., depends in a resonant manner on w or Hy.

1.3.3 High-frequency permeability

The complex amplitude of ac magnetic induction is
b=h+4mm. (1.50)
Substituting (1.41) into (1.50), we get

b= ph (1.51)
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FIGURE 1.5
Permeability-tensor components versus magnetic field.

where the high-frequency permeability tensor

w=1I+4r¥. (1.52)
Here I is a unit tensor, i.e., a diagonal tensor with all nonzero components equal
to unity.?
Taking into account (1.42) and (1.39), we find

po e 0
L=\ -ipa p O (1.53)
0 0 1
where
wi(wy + wy) — w? WW M
p=1+4rx = ( 5 5 Ba =4TXe = - (1.54)
U.)H - W (JJH — W
Here we have used the notation
wy = y4n M. (1.55)

The dependence of x and p, on Hy is shown in Figure 1.5. One can see that the
diagonal component y is negative in the magnetic-field interval from H; to the
resonance field w/~v. The antiresonance field, at which p = 0, is

2
H, = \/(%) + (27FM0)2 — 27 M. (1.56)

2In what follows we shall write 1 instead of I .
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FIGURE 1.6
Permeability-tensor components and effective permeabilities versus frequency.

The condition of antiresonance (Hy = H,) can be written also as w = w; where

wi = Vwy(wy +um. (1.57)

The circular components of the tensor 1z, relating the circular components of m
to such components of h, as it is easy to make sure, are

WH t+wpy Fw
=1 4 = Qg = ——, 1.58
pe=1+4nxs =p+p on T (1.58)
Only 4 hasapole atw = wpy. This component becomes equal to zero at Hy = H,
where

H = % —4xM,. (1.59)

The frequency dependence of different tensor 1 components is shown in Fig-
ure 1.6. The frequency dependence of

2 2 2
_ pe  (wap+em)i-w
=y Ha_ 1.60
(2N w 1 wi_ 2 ( )

is also plotted. This quantity is an effective permeability for one of the electromag-
netic waves propagating in a ferromagnetic medium in the direction perpendicular
to M (Section 4.2). It should be noted that the circular components 1 and p_
are the effective permeabilities for two waves propagating in the direction of M.
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1.4 Allowance for magnetic losses

The oscillations of magnetization are inevitably accompanied by dissipation of
their energy, which is transformed into other kinds of energy, mainly, into the
thermal energy. Various physical processes that lead to the dissipation will be
treated in Chapter 11 and subsequent chapters. The purpose of this section is to
discuss the ways of formal, phenomenological allowance for the dissipation of
energy of magnetization oscillations.

1.4.1 Dissipative terms and dissipation parameters

The simplest way to take dissipation into account is to correct the final expressions
of the tensor Y components. It is sufficient, e.g., to replace the real frequency w
in (1.39) by the complex quantity w’ + iw”. This will result in the appearance
of the imaginary parts of x and x, leading to the absorption of electromagnetic
energy (Section 4.4).

However, it is better to change in a proper way the equation of motion of
the magnetization (1.29). A comparatively small term, leading to dissipation,
should be added into the right-hand side of this equation. This is the method used
by Landau and Lifshitz [241]; the proposed equation can be written as

oM YA
—=—-yM xH-—Mx(MxH 1.61
T YM x e ( ) (1.61)
where X is a dissipation parameter with the dimensionality of magnetic field.>
If we replace M x H in the dissipative term of (1.61) by (—y~'0M /8t)
(using the equation of motion without dissipation) and introduce a dimensionless
parameter a = A\/M, we obtain the equation of motion proposed by Gilbert:
oM a oM
— =—-YMxH+ —M x ——. 1.62
o~ TuY (1.62)
The dissipative term in this equation can be written supposing, simply, that an
effective field of ‘friction’, proportional to the rate of the change of M, is acting
on M. It is easy to show that the substitution

vy aM
_ — —
1+ a? 1+ a?

- (1.63)

transforms (1.61) into (1.62) exactly.

Both equations (1.61) and (1.62) ensure the condition (1.30) for the conserva-
tion of the vector M length. We shall see in Chapter 11 that the length of M
is conserved in some dissipation processes and is not conserved in others. Equa-

3In some later papers the quantity A; = X (with the dimensionality of frequency) was named
‘the Landau-Lifshitz dissipation parameter’.
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tions (1.61) and (1.62) do not hold, strictly speaking (but, nevertheless, are often
used), in the presence of the processes of the second type.

An example of equations of motion that allow the change of the vector M length
is the modified Bloch equation, or Bloch-Bloembergen equation (e.g., [366]):

oM

—r =M xH w,(M HOH) (1.64)

where w; is the relaxation frequency. The dissipative term in (1.64) is proportional
to the difference between the instantaneous magnetization M and the magnetiza-
tion that would be if the instantaneous field H were ‘frozen’.

Equations (1.61), (1.62), and (1.64) differ, first, in the form of the dissipative
term and, second, in the dimensionality of the dissipation parameter. The latter
difference is due to tradition only; in each of these equations it is possible to use
a dissipation parameter with any dimensionality.

Equations of motion with more than one dissipation parameter have also been
proposed. In particular, the Bloch equation [53] with two relaxation times, which
is commonly used for paramagnetic resonance (e.g., [15]), has been applied to
ferromagnetic resonance, too. However, the processes of energy dissipation in
ferromagnets, being numerous and complicated, cannot be described strictly by
an equation of motion either with one or with two dissipation parameters. For
an approximate treatment, especially in the case of small losses, each of the
above-discussed equations can be used.

Consider now the linearization of equation of motion in the presence of losses.
Using, as in Section 1.3, the method of successive approximations, we make
sure, first of all, that the condition for equilibrium (1.33) has not changed. Then
we obtain from (1.61) the linearized equation for the complex amplitudes of the
ac quantities

iwm + ym x Ho+'y)\%m = —vMjy x h + vAh. (1.65)
0

Linearization of (1.62) yields

iwm + ym x Ho + %m x My = —yMjy x h. (1.66)
0

The linearized equation, obtained from (1.64), coincides with (1.65) when w; =

Y AH, [} / M, 0-

If the losses are small, the second term in the right-hand side of (1.65) can be
neglected, and the second expression in (1.63) transforms into A — oM. Thus,
in the case of small amplitudes (linear approximation) and, simultaneously, small
losses, all three considered equations of motion are equivalent, and the following
relations hold for the dissipation parameters in these equations:

A Wr

o —

= — = . 1.
My~ wn (1.67)
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1.4.2 Susceptibility tensor components

To find the tensor Y components in the presence of losses, we have to project the
linearized equation (1.65) or (1.66) onto coordinate axes and solve the obtained set
of linear equations. But this is not necessary for equation (1.66) because (1.36),
with allowance for (1.33), transforms into (1.66) after the replacement

wy — wy + law. (1.68)

Thus, we can make this replacement in the final expressions (1.39). Then, tak-
ing x = x' —ix" and xo = x5 — ixg, we get
1

X = —D"YMowH [wh—(1- o?)w?]

1
= Ba’yMow [w%{ +(1+ az)wz]

1
Xh = B’YMOW [w%, —(1+ az)wz]
X! = 20yMow?wy

D=[wh-(1+ az)w2]2 + 4wy, (1.69)

The dependence of real and imaginary parts of the tensor X components on Hy is
shown in Figure 1.7. The real parts, as should be expected, change their sign, and
the imaginary parts pass through maxima at resonance. The resonance condition
is given now by

WH
= . 1.70
WETr (1.70)
At resonance
o 7M0 "no_ ’7M0
o 2wy o 2aw
TMy

Xares = 0 Xares = 0oy~ Xres: (1.71)

It follows from (1.71) that the smaller the dissipation parameter, the greater the
absorption of electromagnetic energy by a ferromagnet (Section 4.4) at resonance.
On the contrary, the absorption of energy far from resonance is greater the greater
the dissipation parameter, as can easily be shown using (1.69).

Solution of equation (1.65) gives the tensor

X ixa O
X=|-ixa x O (1.72)
0 0 Xl
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Real and imaginary parts of tensor components vs Hy calculated using (1.69) with
My =160G, f = 9.4 GHz, and o = 0.025.

with a nonzero, but small (in the case of small losses) longitudinal component

_ ivA _
X " wn /Mo

The transverse components of the tensor (1.72) coincide approximately in this
case with (1.69) after the substitution of oMy for .

At frequencies or fields near resonance, expressions (1.69) can be approximated
by

(1.73)

!

X X B X" oxa 1

Xits  Xes 1B X X 1+P?
where 8 = (w — wy)/(awg) if Hy = const, or 8 = (Hy — w/7v)/(aw) if w =
const. Expressions (1.74) represent the Lorentz resonance curves (Figure 1.8).
The widths of them, defined as the intervals between w or Hy values at points
where x" = x,/2, are

(1.74)

Aw = 2aw (1.75)
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FIGURE 1.8
Lorentz resonance curves.

In experiments, the derivative dx" /93 is often measured (usually, varying Hy
at w = const), and the linewidth A Hg., is defined as the interval between the
extrema of this derivative (Figure 1.8). It is easy to make sure that

AHger = —I—AH (1.76)

V3
It follows from (1.71) and (1.75) that for a Lorentz resonance curve
AH X, = Mo. (1.77)

It can be shown that this important relation is valid approximately for the actual
resonance curves determined by the expressions (1.69).
Assuming « to be constant, and integrating x”' and x”/ given by (1.69), we get

/ x"dHy ~ / XadHy =~ —/ x"dw = —/ Xrdw=CM, (1.78)
0 0 Y Jo Y Jo

where C is a dimensionless constant factor of the order of 1. For the Lorentz
curve C = 7/2. Note that (1.78) remains valid in the limit of @« — 0. Hence, it
follows that

lim X, = lim X" o, = CMo6 (HO - 5) (1.79)
a—0 a—0 Y

where 6(z) is the Dirac delta function (Appendix C).




22 1 Isotrepic ferromagnet magnetized to saturation

The circular components of the susceptibility tensor in the presence of losses
are
YMo

oy, = — 0 1.80

X =XEXe = (1.80)

The quantities x’, and x/{ behave near resonance (Figure 1.7) similar to the real

and imaginary parts of x and x,, but the values of x, and x/| are twice as large.
The values of x_ and x” remain small at any w and Hy.

The tensor 72 components in the presence of losses are easily obtained us-
ing (1.69) or applying (1.68) directly to (1.54), and we shall not cite them. We note
only that the antiresonance point can be defined now as a point at which i/ = 0, the
value of 1 being small. In the case of small losses the condition for antiresonance
differs only slightly from (1.56), and

2aw WM
I'L;,ntires ~ <1 + __) (1.81)
WM

where w)y is determined by (1.55).

In ferromagnetic and ferrimagnetic (Section 3.3) substances the 1 components
reach very high values at resonance. For example, in YIG perfect single crystals
at frequency of 9 GHz, the dissipation parameter v ~ 5 x 1073 and /., ~ 6000.

It is worth noting that different dissipation parameters depend differently
on w, Hy, and My, as well as on temperature. In choosing a parameter to
use, preference should be given to one the variation of which, in certain ranges
of w, Hy, etc., is the least.

1.5 Uniform oscillations in a small ellipsoid

In the preceding sections the ac magnetization at a certain point of a ferromagnet
was calculated, regarding the magnetic field at the same point as given. However,
this field cannot be, usually, regarded as given but depends on magnetization distri-
bution in the entire system. Only such quantities as the power flux of the incident
electromagnetic wave at the input of the system can be regarded as given. The
field and magnetization distribution over the system can be found by solving the
boundary problem, with the use of Maxwell’s equations and appropriate boundary
conditions. The expressions for magnetic susceptibility , obtained in the preced-
ing section, are to be used as material relations (Section 4.1) in such computations.
Some of these boundary problems will be considered in Chapters 5 and 6. But the
simplest of them, the problem of uniform oscillations of magnetization in a small
ferromagnetic ellipsoid, is to be considered now. Having solved it, we shall be
able to interpret the results of numerous experiments on ferromagnetic resonance
in ferrites, which are usually carried out on small samples, mostly, on spheres.
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1.5.1 Internal and external magnetic fields

Small dimensions of an ellipsoid, in comparison with other dimensions of the
system, permit us to regard the external magnetic fields, both dc and ac, as given.
(External field can be defined as a field at the place of the sample, in the absence of
it.) Then, without solving the boundary problem, we may use the relation known
from magnetostatics (e.g., [131, 44]):

H=H,—-NM=H, + Hy, (1.82)

where H. is the external magnetic field, H is the internal field, and M is the
magnetization; both H and M are uniform if H, is uniform in and near the
ellipsoid. The tensor NV in (1.82) is the demagnetization tensor. It is symmetric
and becomes diagonal in the axes coinciding with the axes of the ellipsoid. The
components of N in these axes, N, N,, and N,, are called demagnetization
Jactors. They depend only on the shape of the ellipsoid (Appendix B), and their
sum is

N;+ Ny + N, = 4. (1.83)

[Sometimes this sum is normalized to 1, then the factor 47 appears in (1.82).] The
quantity Hyem = —IN M in (1.82) is the demagnetizing field.

Substituting the sums of dc and ac components of H,, H, and M into (1.82),
we get

H():Heo—j\}Mo (1.84)

h=he— Nm (1.85)
Let us discuss now the conditions of applicability of (1.85).

1. The sample must be an ellipsoid {this is the condition of applicability of (1.84),
too].

2. The sample dimensions must be small in comparison with the length of elec-
tromagnetic wave in the substance of the sample. This condition is satisfied,
usually, for materials with small conductivity, e.g., for ferrites, small samples are
used in experiments on ferromagnetic resonance in such materials. But in metals
(Section 14.2) the depth of penetration of electromagnetic field into the substance
(the skin depth) is very small (~ 10~* cm at microwaves), and (1.85) becomes
meaningless for samples with all dimensions larger than the skin depth.

3. The alternating magnetization must be uniform. For nonuniform oscillations of
magnetization (Section 6.3) expression (1.85) does not hold.

Taking (1.84) into account, we get the equilibrium condition

M, x (He() - &M()) =0. (1.86)
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The linearized equation of motion ( 1.66), with allowance for (1.84) and (1.85),
can be written as

iw'm,+’ym (He() - NM()) +v (Nm) x My — l;}*wm x My = —’yM() X he.
0
' (1.87)
Equations (1.86) and (1.87) contain the external fields H., and he, which can be
regarded as given quantities, as distinct from the internal fields Hy and h.

1.5.2 Eigenoscillations

In the study of any oscillations we have to begin with the eigenoscillations, i.e.,
Jfree (in the absence of external fields) and nondamped. So, assume in (1.87)
he = 0 and a = 0 and project it onto the axes of a Cartesian coordinate system
in which the z-axis coincides with the direction of M. Let the demagnetization
tensor have, in these axes, the form

- Nit Ni2 N3
N=| Ny3 N3 N>s|. (1.88)
Nis N3 DNis

Then we get two linear equations
(iw + N1 2Mo)ymg + y(Heo, — N3ziMlo + NooMy)my = 0
—Y(Heoz — N33Mp + Ny Mo)mg + (iw + yNi2Mo)my = 0. (1.89)

The condition of compatibility of these equations gives the expression for the
eigenfrequency (i.e., the frequency of eigenoscillations):

1/2
wo = [(wr + ¥N11Mo)(wr + YN22Mo) — ¥* N, M| / (1.90)
where
wh = Y(Heoz — N33 Mp). (1.91)

The maximal absorption of electromagnetic energy by a small ferromagnetic
ellipsoid takes place, as it will be shown below, at a frequency very near to the
eigenfrequency (1.90). So, this frequency, which depends on the shape of the
sample, is the frequency of ferromagnetic resonance. It should be emphasized
that, before using (1.90) to calculate the ferromagnetic-resonance frequency, the
direction of M (and, so, of the z axis) must be found.

If the external field H. is directed along one of the axes of an ellipsoid, then
M, an% consequently, the z-axis are also oriented along this ellipsoid axis. The

tensor N becomes diagonal, and (1.90) acquires the form

wo =7 {[Heo + (N2 — N.)Mo) [Heo + (N, — N.)Mo) }'/*.

It is the famous formula obtained by Kittel [220].

(1.92)
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Limiting cases of an ellipsoid.

The ferromagnetic-resonance frequencies for limiting cases of an ellipsoid (Fig-
ure 1.9) are listed in Table 1.1.

TABLE 1.1
Frequencies of ferromagnetic resonance in small samples

Magneti- See Demagneti-
zation Fig. zation factors
Sample  direction 19 N N, N, Eigenfrequency

Infinitely Tangential (a) 0 47 0 (%‘1)2 =Heo(Heo+47My)  (1.93)
thin
plate Normal by 0 0 4n

Heo—4m M, (1.94)
=Hc()+2‘ITM() (195)

Infinitely Longitudinal (¢) 27 27 0
thin
cylinder Transverse (d) 27 0 2n (‘% = Heo(Heo — 27 My) (1.96)

2|E|2IE

XY

Sphere @ 4 4g 4 0 = Heo (1.97)

For a sphere, expression (1.97) is extremely simple and does not include Mj.
This is the main reason why spherical samples are widely used in ferromagnetic-
resonance experiments. Another reason is that small spheres (with diameters from
several millimeters down to ~ 0.2 mm) with very smooth surfaces, necessary for
such experiments, are made by very simple techniques (e.g., [146]).

It follows from (1.87) that for a sphere

iwm + ym x Heo + z—wm x My = —yMj X h,. (1.98)
0
Comparing this equation with (1.66), we see that the motion of the ac magne-
tization in a sphere occurs as if in the external fields. Formula (1.97) follows
from (1.98).
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It should be noted that Ny, Ny, and Np3 in (1.90) or IV, and N, in (1.92)
are the demagnetization factors for ac fields, while N33 or N, are the demagne-
tization factors for dc fields. They differ from each other in two cases: (i) when
(1.90) or (1.92) is used to find the ferromagnetic-resonance condition in metals
(Section 14.2), and (ii) when an ac magnetic field exists only in a fraction of a
nonmetallic sample, which is excited, e.g., through a hole in a resonator wall. In
both cases formulae (1.90) or (1.92) can be used only approximately, because the
ac field is nonuniform.

Consider now the polarization of eigenoscillations in a small ferromagnetic
ellipsoid. From (1.89), taking (1.90) into account, we get

my _ . Ho + Ni11 My
ms Hy + Nya My

where £ = Ny2(N; + Ho/My) and Hy is the internal dc field (1.84). One can
see from (1.99) that the ac magnetization is elliptically polarized. The axes of the
polarization ellipse do not coincide with z- and y-axes, as the phase difference
between m,, and m, is not equal to 7/2.

If H, ¢ is directed along one of the ellipsoid axes (the ‘Kittel case’),so that N5 =
0, then

-&-¢ (1.99)

my — _i\/HeO + (Nx - N) (1.100)

s He0+(Ny = Nz)‘

Now the axes of the polarization ellipse do coincide with z- and y-axes, the
transverse axes of the sample. The large axis of the polarization ellipse coincides
with the larger of these transverse axes. If the sample is a spheroid, the polarization
is circular. It approaches circular in a general ellipsoid with increasing Heo.

Polarization can be characterized by a parameter named ellipticity and defined
as

|'mmin|2

E=1-
1 max|?

(1.101)

where |Mmax| and |mmin| are, respectively, the large and the small axes of the
polarization ellipse. In the Kittel case they coincide with [m,| and |m,/|, and, if,
e.g., Ny > N, then
_ Ny, — N,

Ny - N, + Heo/Mo‘

£ (1.102)

Assume now in (1.87) h, = 0, as before, but @« # 0. It is easy to see
that the obtained equation differs from the equation with o = O only by the
substitution (1.68) where wy is determined now by (1.91). After this substitution
we get the complex equation

wd — W1 4 o?) + 2iaww; =0 (1.103)
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where wy is the eigenfrequency (1.90) and

1
Wi =wy + E(N” + sz)’)’Mo. (1.104)
Substituting w = w' + iw"” into (1.103), we obtain
1 1
awq
"= 1o (1.106)

Here, w' is the frequency and w” is the damping coefficient of free oscillations.
One can see from (1.105) that losses lead to the shift of the oscillation frequency
which is of the second order in o.

The damping of oscillations is usually characterized by the quality factor Q
defined as

W' w'W

where W is the energy stored in the system and P is the losses of energy per unit
time. In our case, to a first approximation (a < 1),

Qo =~

20wy

wo

(1.108)

This quantity can be called internal quality factor, as the losses only inside the
sample are taken into account.

Expressions (1.105), (1.106), and (1.108) become especially simple for a
spheroid magnetized in the direction of the axis of revolution. Then Nj, = 0,
N] 1= sz, W] = wy, and

1
Qo = e

This formula, as distinct from (1.108), holds for any value of c..

(1.109)

1.5.3 Forced oscillations

Assume now that ke # 0and a # 0in (1.87). The solution of this linear equation
can be written in the form

m = x°he (1.110)

where X¢ is the external susceptibility tensor. It differs essentially from the
tensor SZ defined by (1.41). The tensor ;e is introduced in the framework of
magnetostatic approximation and only for a certain, uniform mode of oscillation
in a sample of a certain, ellipsoidal shape. It characterizes the response of such
a sample to an external ac magnetic field. The tensor X, on the contrary, is
the susceptibility of a substance, it ‘does not know’ whether the magnetostatic
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approximation can be used or not and what the oscillation mode and the sample
shape are. However, the latter is true only to the first approximation; some
dependence of the tensor % components on the oscillation mode and sample
shape does exist because the values of the dissipation parameters depend on these
factors (Sections 11.2 and 11.3).

If the tensor ;{ and the shape of the sample (an ellipsoid) are known, the
external tensor X © can be found by eliminating h from two tensor equations (1.41)

and (1.85). It leads to
(§<'°)_l = (52)—l +N (1.111)

where (x¢)~' and (X)~" are the reciprocal tensors (the components of which
form an inverse matrix [273], relative to the matrix formed by the components

of tensor X or x¢). The quantity (N)~!, the reciprocal value of which appears
in (1.111), can be called ‘susceptibility of the shape’.

However, the calculation of tensor x¢ components by the use of (1.111) is
cumbersome, and it is easier to solve equation (1.87) directly. In the lossless case
(a = 0) it results in

e

X5 Xstixg O

Xe=x-ixt o« O (1.112)
0 0 0
X ys =Dy Mowsy,s X5 = D'y Mow (1.113)

we = wy + 7N22 My Wy =wy + YN 1M, ws = —yN12 My (1.114)

D =wi-uw? Wa = wywy — w2 (1.115)

where wy is the eigenfrequency (1.90) and wy is defined by (1.91).

To take losses into account the replacement (1 68) should be made in (1.114).
We cite here only the formulae for ¢ components at resonance when w} =
w1+ a?):

(X e = Mo O ) = YMo(wrr + Naa,117Mo)
Xa:,y res — 2w1 T, y/res — 2aww|

Ni2y?ME Mo
(X:)l"cs = (Xz);es =0 (XZ):’és = —ml_o (X?z):';s = 20w, (1'116)
where w; is determined by (1.104).
For an ellipsoid of revolution (around the z-axis)
My _
(=0 (&)= 06N = (G = gor =Xhe (111D

The linewidth AH is defined (analogous to Section 1.4) as an interval between
H_ values at which (x5)", (x3)", or (x3)" are equal to one half their values at
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resonance. In the case of small losses, taking into account (1.68) and (1.107), it
can be shown that

20wy 2wrwo _ 2dwo  wd
gl Yo  YMo  ywiQo

The linewidth Aw (when w is varied at constant H,¢) is

AH = (1.118)

Aw = 20w = (1.119)

wo
Qo
For an ellipsoid of revolution, in particular, for a sphere, w; = wpand Aw = yAH.
If a certain dissipation parameter, «, w,, or J, is assumed to be constant, the
expressions (1.118) or (1.119) give, formally, the dependence of AH or Aw

on w, Heo, and My, as well as on the shape of the sample, because the tensor N
components enter the expressions for wy, wp, and w;. However, the dissipation
parameters depend on all mentioned quantities (Chapter 11). This dependence,
found experimentally or theoretically, must be taken into account to obtain the
actual dependence of AH on w, H. ¢, and other quantities.

For high-quality YIG single crystals the dissipation parameter a depends weakly
on frequency in the microwave range and is of the order of 5x10™°. Then
the linewidth AH, according to (1.118), increases with growing frequency. At
frequency of 9 GHz, AH ~ 0.3 Oe.

From (1.117) and (1.118) it follows, for an ellipsoid of revolution, that

AHYE" = M. (1.120)

res

For an arbitrary ellipsoid, a factor of the order of unity will appear in (1.120).

The components of the ac magnetization for forced oscillations can be easily
calculated, using the expressions obtained from (1.113)—(1.115) by the substitu-
tion (1.68). The polarization of oscillations can be also found. We mention here
only that, as it is clear from symmetry considerations, the polarization is circular
when the external field is circularly polarized and the sample is an ellipsoid of
revolution around the direction of My. However, if the sample is an ellipsoid
of revolution and the dissipation is small (&« < 1), then the polarization of the
ac magnetization at ferromagnetic resonance is very near to circular (i.e., the el-
lipticity is small) even in the case of linear polarization of the external ac magnetic
field.

It will be shown in Sections 5.3 and 5.4 that the interaction of a small ferro-
magnetic ellipsoid with the electromagnetic field in a resonator or a waveguide is
determined by the external susceptibility x¢. Thus, the X © components considered
in this section and, consequently, the values of the dissipation parameters can be
found from the measured characteristics of resonators or waveguides containing
ferromagnetic (or ferrimagnetic, see Section 3.3) ellipsoids.
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Anisotropic ferromagnet

2.1 Landau-Lifshitz equation

In this chapter uniform oscillations of magnetization in an anisotropic ferromagnet
magnetized to saturation will be studied.

Anisotropy is a dependence of the properties of a substance or a body on the
angles between the directions of applied fields and some preferred directions.
These directions can be determined by the substance structure, by the shape of
the body, or (if we consider the properties in ac fields) by the directions of some
external steady fields. Two kinds of anisotropy were already treated in Chapter 1.
First, the gyrotropy when the direction of the steady magnetization M, was the
preferred one, and the high-frequency magnetic susceptibility acquired the tensor
form (1.42). Second, we have seen in Section 1.5 that the ferromagnetic-resonance
conditions depend on the orientation of M, relative to the ellipsoid axes. Such
anisotropy can be referred to as the shape anisotropy. However, it was assumed
throughout Chapter 1 that the substance itself (a ferromagnet), in the absence of
steady magnetization, is isotropic.

Actually, most of ferromagnets are crystals characterized by the magnetocrys-
talline anisotropy. Then the preferred directions are the crystal axes, and all the
quantities depend on the angles of Mj relative to these axes. The magnetoelastic
anisotropy is also present in ferromagnets, in this case the preferred directions
are the directions of the external mechanical stresses. Other kinds of anisotropy,
e.g., the anisotropy caused by electric fields or temperature gradients, exist, as
well, but usually play a smaller role. The aim of this chapter is, first, to study
general methods of allowance for the influence of anisotropy on ferromagnetic
resonance and, second, to investigate, using these methods, the most important
case of magnetocrystalline anisotropy.

In the classical theory of ferromagnetic resonance, different interactions lead-
ing to anisotropy are taken into account by corresponding terms of internal (at
temperature T' = 0) or free (at T' > 0) energy. We are not concerned about the
processes at the boundaries between different media, which are important only

31
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for very small ferromagnetic bodies. Therefore, we shall deal only with volume
densities of internal U; or free Us energy. It is known from thermodynamics
(e.g., [244]) that

U= U — ST 2.1)

where S is the volume density of entropy.! The term ST in (2.1) in many cases is
not written explicitly but ‘spread’ over the whole expression for Us. All constants
in this expression, as well as the magnetization M, become then functions of
temperature.

2.1.1 Generalization of equation of motion

The equation of motion for the magnetization of a ferromagnet was proposed by
Landau and Lifshitz [241]. It can not be derived strictly in the framework of a
classical theory. We show this equation to be a reasonable generalization of the
equation of motion (1.29) for an isotropic ferromagnet (which cannot be derived
strictly in the framework of classical theory either .

Consider first the equilibrium state of an anisotropic ferromagnet. The neces-
sary condition of it is that the energy should be stationary, i.e., the variation of
1t

§ / Udv = 0. (2.2)
v

The condition of the vector M length conservation is also to be taken into ac-
count. As we have seen in Chapter 1, this condition (1.30) holds for an isotropic
ferromagnet. The conservation of the vector M length is a result of the strong
exchange interaction; the interactions leading to anisotropy are much weaker.
Therefore, we may assume (1.30) to be valid for an anisotropic ferromagnet, too.

The condition of stationarity of energy under the supplementary condition (1.30)
is (e.g., [273])

6 2 U
i (U+AM?) = spf M =0 (2.3)
where ) is the Lagrange arbitrary factor. It follows from (2.3) that
U

M x — =0. 24
“snr =0 24)

The variational derivative 6U /6 M has the form [273]

sU aU 2 U
- = 2.5
M Z « 0z, [ dM/Bx,,)] (2:3)

'In what follows we shall omit the words ‘volume density’. The indices ‘i’ and ‘f* will be also
omitted when it does not lead to ambiguity.
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Comparing (2.4) with (1.33), we see that the magnetic field in the condition of
equilibrium is replaced by the quantity U /6 M. It is reasonable to suppose that
an analogous replacement is to be made in the equation of motion (1.29), as well
as in equations (1.61), (1.62), or (1.64) allowing for dissipation. Only the sign
must be reversed because in these equations H = —9U /3 M. We obtain then the
Landau-Lifshitz equation

oM
——3?- =—-—YM x Hs+ R (2.6)

where the effective field
3

U 8U ) U
Ha=—3s0r="5m " Z 3z, [—*—awM/a%J @7

=1
and R is the dissipative term. The condition of equilibrium can be written now as
M() X Hef() =0. (2.8)

The dissipative term in (1.62) can be supposed to be unchanged, and the equation
of motion takes the form

% = M x He + %Mx %—Af

In the dissipative terms of (1.61) and (1.64) the field H can be replaced by H.s.

The quantity v should be, in general, a tensor. In the case of paramagnetic
resonance (e.g., [1]) the entire anisotropy is taken into account by means of
a tensor g-factor. There are experimental data [166] showing that, when the
anisotropy is large, the allowance for the tensor g-factor becomes necessary in the
case of a ferromagnet, too. However, it is not quite clear what equation of motion
should be used in this case. The influence of the tensor character of the g-factor
is usually small for ferromagnets, and so, we shall regard the quantities y and ¢
as scalars.

For an anisotropic ferromagnet,

(2.9)

U = Uex + Umag + Unn (2.10)

where Uy is the exchange energy, Upn,g is the magnetic energy, and Uy, is the
energy of anisotropy.
The exchange energy can be regarded as a sum of two terms:

Uex = Uexo + Uex ~. (2.11)

Here, Ueo is the value of exchange energy when the magnetization is uniform,
and Uy . corresponds to the increase of this energy due to the nonuniformity of
magnetization. The term Uy, ¢ can be written in the form

Uero = %MXM 2.12)
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where A is the exchange tensor. In many cases it can be regarded as a scalar.
Then,

Uexo = %AMZ. (2.13)

The effective field that, according to (2.7), corresponds to the energy term (2.13)
is the ‘molecular’ field (1.22). This field does not enter the equation of motion, in
any case, the main term M x Hs and the dissipative terms in the Landau—Lifshitz
and Gilbert forms. As we now deal only with uniform magnetization oscillations,
we do not touch on the term U, .. It will be considered in Section 7.1.

The magnetic energy can be written as

Umag =Uz+Uym (2.14)
where
Uz=—-MH, (2.15)

is the Zeeman energy, i.e., the energy of the magnetization in an external magnetic
field H,, and Uy, is the internal magnetic energy resulting from the magnetic
(dipole—dipole) interaction between magnetic moments of the sample. For a
smgll ferromagnetic ellipsoid (Section 1.5) the effective field of this interaction is

—NM, hence,
Uy = -;-M (R}M> . (2.16)

The term Uy, represents all kinds of anisotropy. The expressions for this term in
the case of magnetocrystalline anisotropy will be cited in Section 2.2.

To linearize the Landau-Lifshitz equation let us substitute M = M, +
m exp(iwt) and

Hes = Heeo + herexp(iwt) + hexp(iwt) (2.17)

into (2.9). In (2.17) we have excluded the given ac field h from the effective
ac field, whereas the given steady field has been left in Hego. The field h can be
either an internal or an external field, according to what quantity we have to find,
the susceptibility of the substance  or the external susceptibility x ¢ (Section 1.5).
Taking into account the equilibrium condition (2.8) and assuming all alternating
quantities to be small, we obtain a linear equation for the complex amplitudes:

iwm 4+ ym X Hepo + YMoy X hes + l;\ll—wm x My=—-yMyx h. (2.18)
0

It is easy to make sure that the results of Section 1.5 can be obtained by the
formalism of the present section, as well. Actually, if the external fields H.q
and h, are given, and the ferromagnet is isotropic, the energy U will be the sum
of Zeeman energy (2.15) fa_pd the demagnetizagon energy (2.16). Applying (2.7),

we find Herg = H.9o — NMj and hes = —Nm. Substituting these quantities
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into (2.18), we obtain equation (1.87), from which all the results of Section 1.5
follow.

2.1.2 Methods of analysis of ferromagnetic resonance in
anisotropic ferromagnet

One of these methods, the method of effective demagnetization factors, was sug-
gested by Kittel [220] and elaborated by MacDonald [266]. Followin g this method,
we try to represent the effective field in the form analogous to the demagnetizing
field:

Hy=-N¥M (2.19)

introducing the tensor of effective demagnetization factors N¢f. It will be demon-
strated in Section 2.3 that such representation is possible in the case of small
oscillations (m < M) if the z-axis is directed along the steady magnetiza-
tion My. The effective field having been written in the form (2.19), the problem
of allowance for the anisotropy is solved, in principle, beca‘ilse all the formulae of

Section 1.5 can be used. One must only replace the tensor N components in these

formulae by the corresponding components of tensor N¢f or the sum N + N of,
according to Table 2.1.

TABLE 2.1
Replacement of the demagnetization tensor components when the formulae of Section 1.5
are used to take the anisotropy into account.

Components of tensor F/ have to be replaced by

Components in calculating in calculating ;‘ components and
of tensor N¢ X components resonance conditions for an ellipsoid
Nij G,5=1,2) N Nij+Ng

N3j N33+ Nsh N33+ N

@ Axis 3 coincides with the direction of M.

Another method used to analyze the ferromagnetic resonance in anisotropic
media is the method of spherical coordinates proposed by Smit and Beljers [371]
and by Suhl [390]. Skrotskii and Kurbatov [366) generalized it taking dissipation
into account. This method is based on the transition from the variables M o My,
and M, to the variables 6, ¢, and M where 6 and o are the angles of M in
a spherical coordinate system, and M is the vector M length. If the latter is
conserved, two variables, 8 and ¢, are enough.

Let us obtain the equations of motion in new variables using equation (2.9)
(which assures the conservation of M) and assuming the magnetization to be
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uniform. Then, it is easy to show that all three equations, projections of (2.9) onto
the axes z, y, and z, are satisfied if the following t equations are valid (we write
them in the case of small dissipation, i.e., a < 1):

% ___7 U _oydU
8t Msin8dp M 96
dp_ 5 8U__a_OU
8t ~ Msinf 89  Msint0 g’

If we use equation (1.64) with the dissipative term that does not assure the con-

servation of M, two equations would be identical to (2.20) after the substitution

wy — 0wy, and the third would be

oM M, U

Consider now the case of small deviations of M from Mp. The angles 6y and
o of My can be found from the equilibrium conditions

<6_U> =0 (%\, =0 (2.22)
99 6=0o, p=¢0 9% ) 8=00, ¥=0

which are equivalent to the condition (2.8). (One is to make certain, of course,
that the obtained 6y and g values correspond to a minimum of energy.)

The derivatives 83U /38 and U /Oy in (2.20) are expressed as power series in
small quantities 80.. = 6 — 6y = 66 exp(iwt) and dp.. = ¢ — o = b exp(iwt).
Taking into account the conditions (2.22) and discarding the terms with powers of
86 and §¢ higher than unity, we obtain /inear equations

(2.20)

. Y avy
(lw + My SineoUoLp + J\I()UM) 66

Y Qy
—U —-Upg, | bp =10
+ (M() sin 9() v + M() 0<P) ¥

. Y ary
L Upp+ ——5-Upp | 6
(lw Mo sin 90 B¢ + Mo Sin2 91) WP) ¥

2 ary
— | ——Upg — —5-Us, ) 660 =0 2.23
(M() sin 9() o0 Mo Sil’l2 «‘)() GLP) ( )
where Ugg = 82U /862, U,,, = 8°U[8¢?, and Us, = 8°U /809 at equilibrium
(# = 6o and ¢ = o).
Consider first the eigenoscillations. Then, the condition of compatibility of
equations (2.23) with a = 0 yields the expression for the eigenfrequency

wo = Y )1/2
M() sin 0()

known as the Smit—Suhl formula.

(UseUypy — Uz, (2.24)
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If the dissipation is taken into account, the frequency of free oscillations be-
comes complex. The real part of it is given, to a first approximation, by (2.24),
and the imaginary part is

n_ lay 1
w = 5]\70 Ugo + sinzooUW : (2.25)

The Zeeman energy (2.15) (which is one of the parts of U) is written in spherical
coordinates as

Uz = —MH, [cosfcosfp + sinfsinfp cos(p — on)] (2.26)

where 85 and ¢y are the angles of the vector H.. The total magnetic energy can
be written analogously.

When the forced oscillations are considered, a term Uy, depending on a given
ac field h, should be included in the energy. This field can be internal or external,
depending on what problem is solved. The term Uj can be written by analogy
with (2.26). We shall preserve the symbol U for the energy without this term, the
total energy will be U; = U +Uy,. Then, the same operations as in deriving (2.23),
but with substitution of U, for U, lead to equations the left-hand sides of which
are the same as in (2.23). In the right-hand sides of the first and of the second
equations (2.23), respectively, the following terms appear:

yhsinBy sin(wo — @n)  vh [cotfosin s cos(wo — @n) — cosbr]  (227)

where @), and ¢}, are the angles of the vector k, and h is its length.

Using the method of spherical coordinates, we must carefully take into account
the equilibrium conditions. For instance, we ought not to take o = 6y even when
the difference between these angles is small. We also must not direct the z axis
along My to avoid indeterminacies arising from sinfp = 0. On the contrary,
when the method of effective demagnetization factors is used, the z axis should
coincide with the direction of M.

2.2 Magnetocrystalline anisotropy

In this section we review briefly some general aspects of the most important kind
of anisotropy in ferromagnets, the magnetocrystalline anisotropy.

2.2.1 Origins of magnetocrystalline anisotropy

The exchange interaction of spins, in the absence of orbital moments, is isotropic.
Therefore, the magnetocrystalline anisotropy can be caused either by other inter-
actions of spins or by the spin—orbital interaction.
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One of the origins of the magnetocrystalline anisotropy in magnetically ordered
crystals is the magnetic (dipole—dipole) interaction of elementary magnetic mo-
ments (Section 1.1). The energy of magnetic interaction of two magnetic moments
with the same values and orientations, according to (1.3), is

302 1
Efp = —% (cos2 Opp — %) =-C (coszﬂff: - 3) (2.28)
£

where 6 is the angle between 2T and 7. If the magnetic moments form a
lattice, the internal magnetic energy Ujs, which is the sum of the energies (2.28),
should depend, in general, on the orientation of the moments relative to the lattice
axes. However, for all cubic crystals, Uy turns out to be isotropic [208]. For
non-cubic ferromagnets, the contribution of Uy, to the energy of anisotropy is
very small.

Another origin of the magnetocrystalline anisotropy is the anisotropy of the
exchange interaction, which arises due to the spin—orbital interaction. It can be
explained in the following manner [208]. The turns of spins, due to the spin—
orbital interaction, result in the change of the shapes of atomic electron shells.
This leads to the alteration of the exchange energy (which is a fraction of Coulomb
energy of these shells).

The energy of anisotropic exchange interaction can be written (assuming the
magnetization to be uniform) as (2.12). However, it is customary to regard the
exchange constant A as a scalar and include the angle-dependent part of the
energy (2.12) into the energy of anisotropy.

Both the above-considered origins of magnetocrystalline anisotropy, in spite of
their different physical nature, are alike in the sense that they are both based on pair
interactions of elementary magnetic moments. The angular dependence (2.28) is
the first term of the expansion of an arbitrary angular dependence in the natural
functions for this problem, the Legendre polynomials of cos 8 [273]. That is why
Van Vleck proposed (e.g., [208)) the pseudodipole interaction [with such angular
dependence as in (2.28) but with another coefficient C] as a formal origin of
magnetocrystalline anisotropy. If we try to use such interaction to allow for the
values of anisotropy in real ferromagnets, we find C' to be 2-3 orders higher than
in (2.28). A substantial contribution to the C values, found in such way, arises
from the above-mentioned anisotropic exchange interaction.

The one-ion origin of magnetocrystalline anisotropy is quite different, at first
sight, from the above-considered origins. Now the angle-dependent free energy
is not the sum of pair-interaction energies, but is a sum of energies of individual
ions (depending, of course, on their interaction). The ions are characterized by
their energy spectrum, i.e., by the set of allowed energy levels. The Boltzmann
distribution holds for them, and the free-energy density (in the case of one sort of
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ions) can be calculated with the formula [244]

Uion = —kT'In N;exp (—é) (2.29)

where ¢ are the ion energy levels, and N is the concentration of ions. The angular
dependence of the energies ¢; is now the origin of the anisotropy. Numerous
calculations of the one-ion contributions to magnetocrystalline anisotropy of ionic
crystals, both ferromagnetic and antiferromagnetic, are in good agreement with
experiment.

It is worth pointing out that in both cases, of anisotropic exchange and of one-ion
anisotropy, the real cause of anisotropy is the spin—orbital interaction. The ex-
change interaction, which is anisotropic in the presence of spin—orbital coupling,
influences the ionic energy levels and determines, together with the crystal field,
their angular dependence. Therefore, the anisotropic exchange and the one-ion
anisotropy should be considered, strictly speaking, not as independent mecha-
nisms but models or theories corresponding more or less to the real experimental
situation.

2.2.2 Phenomenological description

Irrespective of the nature of magnetocrystalline anisotropy, it is possible, as Akulov
proposed (e.g., [208,70]), to write down expressions for the energy of anisotropy in
the form of power series in M projections on crystal axes. Such expressions must
be compatible with the symmetry of the crystal lattice, i.e., remain invariant under
all operations which form its symmetry group. The coefficients in these series are
called anisotropy constants. Only the terms with odd powers of the magnetization
projections can be present in these expressions, because magnetization, being an
axial vector, changes its sign under the reversal of time, whereas energy must be
invariant [410, 208].
For rhombic crystals the energy of anisotropy can be written as

U =KV + kP2 + U, (2.30)

where a; = M; /M (j =1, 2, 3) are the direction cosines of M with respect to the

symmetry axes, and U,, is the sum of terms of higher order. We have taken into
account that o3 + o3 + a3 = 1 and, therefore, omitted one of the terms K, @ 3
For so-called uniaxial ferromagnets: trigonal, tetragonal, and hexagona] (with
one main axis, respectively, of the third, fourth, and sixth order), we can neglect,
to a first approximation, the anisotropy in the basal plane (perpendicular to the

main axis). Then, we get
Uan = K sin? 8 + K, sin* 0 + K3sin®6 + ... (2.31)

where 6 is the angle between M and the main axis. If the anisotropy in the
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FIGURE 2.1
Symmetry axes and planes in a cubic crystal.

basal plane is taken into account, additional terms appear in U,,: the term
K} sin*@ cos 4¢ for a tetragonal crystal and K 4sin®@ cos 6¢ for trigonal and hexag-
onal crystals, ¢ being the angle in the basal plane.

In the case of cubic crystals, the magnetocrystalline-anisotropy energy is written
usually in the form proposed by Akulov

U = K1 (o303 + a3} + ddal) + Kraladdd + ... (2.32)

where a1, 7,3 are the direction cosines of M with respect to the directions [100],
[010], and [001] (Figure 2.1). The first term in (2.32) can be replaced by K| (af +
a3 + of), where K| = — K /2. Passing in (2.32) from the direction cosines to
the angles 6 and ¢, we obtain

1 1
Ui = il (sin® 26 + sin* @ sin? 2¢) + RKZ sin?@sin® 20sin?2p.  (2.33)

The angle-dependent parts of elastic and magnetoelastic energies of a ferro-
magnet (Section 12.1) are usually included in the energy of magnetocrystalline
anisotropy. As the expressions (2.30)—(2.32) are determined only by the crys-
tal symmetry, they also hold for the total anisotropy energy. But the values of
anisotropy constants are changed, ‘renormalized’. The measurement of anisotropy
constants by ‘static’ methods, i.e., at small rates of the change of magnetization
direction, yields these renormalized constants. But if the rate of magnetization
change is high enough, e.g., at ferromagnetic resonance, the measurement of
anisotropy constants gives another values of anisotropy contants. Fortunately,
for many substances the difference is small. This topic will be discussed in
Section 12.2.
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2.2.3 Equilibrium orientations of magnetization

To study small oscillations of magnetization, in particular, at ferromagnetic res-
onance, we must first find the steady state, i.e., the equilibrium orientations of
magnetization. If only the energy of magnetocrystalline anisotropy is taken into
account, the equilibrium directions of magnetization are determined by the con-
dition of minimum of this energy. These directions are referred to as the axes
of easy magnetization or, simply, easy axes. (The directions of U, maxima are
called hard axes.)

Consider a uniaxial ferromagnet and limit ourselves in (2.31) to the first con-
stant K;. Then, if K; > 0, the axis of anisotropy (¢ = 0) is the easy axis.
If K; < 0, this axis is the hard one, and the plane § = 7/2 is the easy plane. The
allowance for the anisotropy in this plane results in the appearance of some easy
directions lying in it.

In the case of cubic crystals, we also limit ourselves, at first, to the constant K.
Then, if K| > 0, the directions (100) are the easy axes,” and the directions (111)
(p = 45°, 6 = arccos \/1/3 = 54°44’) are the hard axes (Figure 2.1). If K; <0,
directions (111) are the easy axes, and directions (100) are the hard axes. When
K, # 0but | K| < (9/4)| K1, the easy and hard directions are the same as in the
case of K, = 0.

In reality, to find the equilibrium orientation of magnetization it is necessary,
along with the energy of magnetocrystalline anisotropy, to take into account the
Zeeman energy (2.15), the internal magnetic energy (2.16), and also elastic and
magnetoelastic energies (Section 12.1) if the external elastic stresses are present.
In doing so one can choose between two quite equivalent methods: to minimize
the total energy or to use the condition (2.8).

It should be noted that the uniform magnetization of the whole sample is not
always the equilibrium state. In the absence of an external magnetic field or in
a weak field, a ferromagnetic sample (with not too small dimensions) is divided
into domains (Section 8.1). In the present chapter we assume the external field
to be high enough to magnetize the sample to saturation. And, if we consider
ellipsoidal samples in a uniform external field, the equilibrium magnetization is
also uniform.

Let us first examine a sphere of uniaxial ferromagnet (Figure 2.2). For spherical
samples there is no shape anisotropy, and the equilibrium orientation of magne-
tization can be found by minimizing the sum U = U, + Uz where Uy, is the
magnetocrystalline energy (2.31), and Uz is the Zeeman energy (2.26). The con-
ditions for equilibrium are (2.22). From 0U/d¢ = 0 it follows that ¢9 = ¢H.
Limiting ourselves to the first term in (2.31) we obtain from oU/96 = 0 an
equation

Hasin28g = Heosin2 @y — 6p) (2.34)

2The symbol () denotes one of the equivalent directions, e.g., (100) denotes one of the directions
[100], [010], and [001]. The symbol { } denotes one of the equivalent planes, e.g., the plane {100} is
one of the planes (100), (010), and (001).
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FIGURE 2.2
Coordinate axes for a sphere of a uniaxial ferromagnet (K| < 0).

where the following notation is introduced:

=, 2.
Haqy M, (2.35)
The analysis of (2.34) shows (Figure 2.3) that the orientations of My and H,q
coincide when Hy is directed along the easy axis (if K; > 0) or lies in the

90

8 (deg)

30 60
0y (deg)

FIGURE 2.3

Equilibrium orientations of magnetization in a sphere of' a uniaxial ferromagnet. Numbers
at the curves indicate the H.o/Ha values. It has been taken Hay; = 47 M. Dashed
lines show that the solution is not realized, because the assumed steady state (uniform
magnetization) is not realized, and domains appear.
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easy plane (if K1 < 0). When H, is directed along the hard axis or lies in
the hard plane, the orientations of My and H.¢ coincide if Heo > 2|Ha;|. But
the condition of the uniformity of magnetization (Section 8.3) is in our case:
H.o > 2Ha1 + (47 /3)Mp. Thus, in a uniformly magnetized sphere the M,
direction coincides with the direction of H. if the latter is oriented along an easy
or a hard axis, or lies in an easy or a hard plane. For all other H, orientations the
direction of My approaches the H.( direction asymptotically as H.¢ increases
(Figure 2.3).

The behavior of the steady magnetization My in cubic crystals is analogous to
the behavior of it in uniaxial crystals. Namely, when My is uniform, its direction
coincides with the direction of H, if the latter is oriented along one of the axes
(100), (110), or (111) and approaches the direction of H.( asymptotically with
growing H., ¢ for all other orientations.

Let us discuss briefly the problem of measurement of the magnetocrystalline-
anisotropy constants. Single-crystal samples in the form of ellipsoids should be
used because in this case, the M value being known, the shape anisotropy can be
taken into account. It is very convenient to use spherical samples, for which the
shape anisotropy does not exist and, so, the knowledge of M, is not obligatory.
The samples must be turned around some axes, so that the My vector will change
its orientation with respect to the crystal axes. The values that are measured
directly are either the torsion torques (e.g., [208, 70]) or the frequencies (or the
steady magnetic fields at constant frequency) of ferromagnetic resonance. The
latter case will be discussed in the next section.

2.3 Ferromagnetic resonance in a single crystal

Studying the influence of magnetocrystalline anisotropy on the magnetization
oscillations in single crystals, we shall use, mainly, the method of effective de-
magnetization factors mentioned in Section 2.1. According to this method we
represent the effective field of magnetocrystalline anisotropy (in the case of uni-
form magnetization):

OUan
H,, = ~ M (2.36)
in the form
Hap = -N"M. (2.37)

Two problems are to be solved: (i) calculation of permeability tensor 7 com-
ponents of a single-crystal ferromagnet, and (ii) derivation of ferromagnetic-
resonance conditions for a small single-crystal ellipsoid.

Solx@ng the first problem, we have to replace, according to Table 2.1, the trans-

verse N components in the formulae of Section 1.5 by the transverse components
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of the tensor N, and replace N33 by the sum N33 + N25. The components of
both tensors must be written in the same coordinate system, in which the third
axis is directed along Mp. Only in such system 15 it possible to express Hy, in
the form (2.37). The direction of M should be, of course, found beforehand.

The general expressions for the permeability-tensor components follow from
(1.112) and (1.113):

He Hs + i["a. 0

I’j =1 Bs —1la Hy 0 (2.38)
0 0 1
_ WMWz,y | WMWs  wMw

where the frequency wp has the form (1.115). The quantities w4, s are determined
(if dissipation is not taken into account) by the formulae (1.114), in which the
above-mentioned replacements must be made. To take dissipation into account it
is sufficient to replace wy (in wg, wy, and wp) by wy + iaw.

2.3.1 Sphere of a uniaxial ferromagnet

Turning to the second problem, consider first the ferromagnetic resonance in a
uniaxial ferromagnet. We ignore the anisotropy in the basal plane and take into
account only the first anisotropy constant K;. Then

2 M;

Um=Kisin"p=K; (1 - =% 2.40

an 1 0 1 ( Mg ) ( )
where the 2’-axis is the axis of anisotropy. We write down the z’, y', and 2z’
components of the effective field (2.36) and pass then to the coordinate system
x, ¥, 2, in which the z-axis is directed along M and the z-axis coincides with the
axis ' (Figure 2.2). Then, we obtain, as it is easy to make sure,

2H .
Hype =0 Hyy = Al (MZCOSH()—MySineo) sin 6y
0
2H .
Hu, = % (M, costy — My sinfy) cosfp  (2.41)
0

where ) is the angle between the axes 2z and 2/, and Hp | is determined by (2.35).
Expressions (2.41) have the form (2.37). It should be noted that for small oscilla-
tions (M, y, < M, = M) the field H,, can be written in the form (2.37) even
when we take into account the higher terms in (2.31). Taking into account two
first terms, we obtain [266]

H 4H,
Al gin? 6o + A2

2
Ni=N5=0 N%:—MO o

(2sin® 8y — 3sin* §y)
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. 2H 4H,
N = - AL cos? G — —2 (cos? B — cos” 6o) (2.42)
0 0
where
K,
Hpr = —. .
A2 M, (2.43)

(Other N components do not enter the ferromagnetic-resonance formulae.)
Let us now derive the expression for the ferromagnetic-resonance frequency in
a sphere of uniaxial single crystal. According to Table 2.1 we have to substitute

the sums of the tensor N components and the components (2.42) of the effective

demagnetization tensor into (1.90) and (1.91). But for a sphere all N components
are the same, and they cancel out. Then,

2

%)% = [Heo: +2Ha 108260 + 4Ha sin® fo(1 + 2 cos 26p)]
X [Heos + 2Ha1 cos’ 8o — 2Ha sin” 26y (2.44)
where Heo, = Heocos(6p — 0 ); here 6 and 6 are the angles between the

vectors Heo and My, respectively, and the axis of anisotropy. The angle 0y
is given, and 6, must be found by solving the problem of the equilibrium state
discussed in Section 2.2.

We now show (taking into consideration, for simplicity, only the first anisotropy
constant K1) that the expression (2.44) can be obtained by the method of spherical
coordinates (Section 2.1) as well. The energy U in the Smit—Suhl formula (2.24) is
now the sum of Zeeman energy and the energy of magnetocrystalline anisotropy.
Using the equilibrium condition ¢o = ¢, we find from (2.24)

2
“o

12
Using the second equilibrium condition (2.34), it is easy to show that (2.45)
coincides with (2.44) if K, = 0. Thus, it is inadmissible to ignore the difference
between 6p and 8y in (2.45) even if this difference is small.

However, in (2.44) we may assume 8y = 6 in the case of small anisotropy. And

if we disregard the terms of second order in the ratios Ha 1/Heo and Hp2/Heo,
the expression (2.44) takes the form

sin 91{
sin 0() '

= [Heocos(fo — 1) + 2Ha 1 c0s26o] Heo (2.45)

1 3 1 3
2 - 0+ Hal (E+§cos26H>+HA2 (_Z +cos263—zcos49}1 .

Y
(2.46)
The results of calculation of the ferromagnetic-resonance conditions for a sphere
of a uniaxial crystal with the use of (2.46), i.e., with the assumption 6y =0y, are
shown in Figure (2.4).
The angular dependence of the resonance field (at w = const), calculated
without the assumption that the directions of My and Heo coincide, is shown in
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FIGURE 24

Ferromagnetic-resonance frequencies for a sphere of a uniaxial crystal, calculated by (2.48)
with Ha1 = 4n My and Ha, = 0. Dashed lines show that the calculation is not correct
because the assumed uniform magnetization is not reali zed.
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FIGURE 2.5

Angular dependence of H.s for a sphere of a crystal with easy plane of anisotropy. Solid
curve is calculated using (2.34) and (2.44) with g = 2.24, Ha; = —8.3kOe, and Hp, = 0.
Dashed curve is calculated by (2.46) with the same values of parameters. Points represent
the experimental data for the ferrimagnet RbNiF; at frequency of 31.4 GHz and tempera-
ture 78 K [143].

Figure 2.5; the result of calculation with this assumption and the experimental
data are also plotted. One can see from this figure that for this crystal, with rather
large anisotropy, the allowance for the difference between M, and H, q directions
is necessary.
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FIGURE 2.6
Coordinate axes for a sphere of a cubic ferromagnet.

2.3.2 Sphere of a cubic ferromagnet

The derivation of the conditions for ferromagnetic resonance in cubic crystals
leads to rather cumbersome calculations (e.g., [266]). Without dwelling on them,
we shall cite the most important results.

If only the first constant K in (2.32) is taken into account, the components of
the tensor of effective demagnetization factors V2" have the form [266]
Hp,

N =-3 A sin? 8y sin® 2¢0p

H 1
N® = _3M—AO‘ sin’ 6 (1 -3 sin’ 2%)

H
N = 3541 G2 8o cos B sin 4g
M,
an _ Hal 2 S g 2
N# = v (1 + cos® 26 — sin” 8y sin® 2¢p) (2.47)
)

(the coordinate axes are directed as in Figure 2.6). Substituting them for the tensor

N components in (1.90) and (1.91), we obtain the expression for the resonance
frequency in a sphere of a cubic ferromagnet

2
Wo

- = {Heoz + Hai
~

3 1 15 1
X [5 + 50054«90 + (——8— + 2cos 20y — gcos490) sin? 2<p0] }
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1 1
X {Heoz + Ha [200s400 + (5 cos 26y — ECOS490) sin22<p0] }
92 i 2g 2 2
—ZHAlsm 6 sin” 26 sin” 4. (2.48)

(According to Table 2.1, the components of the sum N"+ N should be substituted,
but, for a sphere, the components of N cancel out.)

The most interesting is the case when the steady magnetization M) is in the
{110} plane, in which all symmetry axes of a cubic crystal lie. We cite the
resonance condition for this case (@9 = 7 /4) taking into account two anisotropy
constants [176]:

2
3
M: Heo. + Ha —§+2(:os200+—cos400
~v? 8 8

5 5 9
+ Hax (§ + 2 cos 26y 3 cos 400) sin? 60]

1 3
X [HeOZ + Ha (5 cos 26y + —2—c0s490>

+ Ha» (—17_6 + 13_6 cos 290) sin? 290] . (2.49)

The formulae following from (2.49), in the particular cases when M direction
coincides with the symmetry axes, are given in Table 2.2. In this table H.q, is
replaced by H. ¢, because the directions of My and H, o coincide for the symmetry
axes (if Heg is large enough to assure the absence of domains). Attention should
be paid to the difference in the structure between formula (2.52) and the first two
formulae in Table 2.2. This is due to the fact that the directions (100) and (111)
are the directions of extrema, whereas the (110) direction is the saddle ‘point’ of
the Upn (6, ¢) surface.

TABLE 2.2
Ferromagnetic-resonance frequencies for a sphere of a cubic crystal.

Direction

of M On %

(100) 0 Heo+ 2Ha (2.50)
(111) 54°44'  Heo— $Hai— §Ha @51)

(110) 90° [(Heo —2Ha1) (Heo + tar + $Ha2)] @52)




2.3 Ferromagnetic resonance in a single crystal 49

4
0 -
F
2 _,
L =
—-1F F 1
| —44
0 30 60 90
0y, (deg)

FIGURE 2.7
Functions defining the anisotropy of a cubic ferromagnet.

If the anisotropy is small (Ha1, Ha2 < Heo), (2.49) can be written as

w
70 = He.o+ Ha1Fi(6) + Ha2F2(0y) (2.53)
where (Figure 2.7)
15
F(6) = _13_6 + %cos 20 + T6 cos46 (2.54)
7 5 15 21
F(6) = ~& + 128 °°8 20 + e cos46 — 128 °°8 66. (2.55)

The angular dependence of the resonance field calculated with formulae (2.53)
and (2.54) is plotted in Figure (2.8). The experimental results for YIG are also
shown. One can see that in the present case of small anisotropy, sufficiently high
frequency, and room temperature, neither K, nor the difference between 6 and
6z must be taken into account.

An expression for the resonance frequency in the case, when Mj lies in the
(100) plane, can also be easily obtained from (2.48). The angular dependence
of H., which was calculated disregarding K, and the difference between 6 and
fy, is shown, for this case, in Figure 2.9. One can see from Figures 2.8 and 2.9
that in both planes there are directions in which Heo = w/~. When single-crystal
spheres are used in microwave ferrite devices, it is reasonable to orient them so
that My will coincide with one of these directions; then the resonance field is
independent of K and, hence, of the temperature.
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FIGURE 2.8

Angular dependence of Hcs for a sphere of a cubic ferromagnet with K| < 0. 0y is
the angle between H.o and the axis (100) in the {110} plane. The curve is calculated
by (2.53) at Ha2 = 0. Points represent experimental data for a YIG sphere at a frequency
of 9.3 GHz and at room temperature [159].

Consider now the case when M) lies in the {111} plane. It is easy to show
that, if Hy1 <« Heo and Hp, = 0, the {111} plane is approximately isotropic.
The anisotropy in this plane arises, first, due to the influence of the effective
demagnetization factor N5, i.e., of the last term in (2.48), and, second, due to the
influence of K. The (111) axis is the sixth order axis of this anisotropy, and the
expression for the resonance frequency of a sphere, when Hay < Hp1 < Heo,
takes the form [72]

wo

1 1 1 H? 1 H? 7
L Ho—- —Hpp—=ALp ([ —ZZAL, g 610 (2.56
5 ¢0 2HA1+18 A2, +< 3 H.o, + 3¢ a2 | cos o (2.56)

where g is the angle between My and the (110} axis in the {111} plane. The
general case of My lying in an arbitrary plane of a cubic crystal was treated
by Yakovlev and Burdin [453].

2.3.3 Simultaneous allowance for different kinds of anisotropy

In the problems discussed above the sample was a sphere, and only one kind of
magnetocrystalline anisotropy, uniaxial or cubic. was taken into account. But
often we have to consider simultaneously the shape anisotropy and one or more
kinds of magnetocrystalline anisotropy. A typical example is the single-crystal
YIG film grown epitaxially on a paramagnetic substrate. In such films there
appears a growth anisotropy, usually the uniaxial, with the axis directed along the
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FIGURE 2.9

Angular dependence of H.s for a sphere of a cubic ferromagnet with K; < 0. @y is the
angle between H. ¢ and the axis [100] in the (100) plane. The curve is calculated by (2.48)
with 8y = 7r/2, and Ha1 < Heo (so that Heo, 2 Hco and po 2 ¢g).

normal to the film surface.

Both methods, of effective demagnetization factors and of spherical coordinates
(Section 2.1), can be used to study the simultaneous influence of several kinds of
anisotropy. Using the first method, we have to assume the effective demagneti-
zation factors to be the sums of such factors for all kinds of anisotropy. When
the second method is used, the energy U in (2.24) and (2.25) must be the sum of
the Zeeman energy and the energies of all considered kinds of anisotropy (except
the shape anisotropy if we want to find the tensor x). It should be noted that
from the additivity of energies, or effective demagnetization factors for different
kinds of anisotropy, the additivity of their contributions to resonance frequency or
resonance field does not follow, in general. One can see this, e.g., from formu-
lae (1.90) or (2.24). But the additivity takes place approximately in the case of
small contributions.

The calculations of the tensor 35 or x¢ components and of the resonance fields
or frequencies, in the presence of different kinds of anisotropy, by the method
of effective demagnetization factors are usually cumbersome because one has to
write down the components of all effective demagnetization tensors in the same
coordinate system. We will limit ourselves to one simple example.

Let us find the ferromagnetic-resonance condition for a thin film of a cubic
ferromagnet magnetized normally or tangentially to the surface of the film, which
coincides with the {110} plane. We take into account only the first cubic anisotropy
constant K§ and the constant K} of the uniaxial growth anisotropy with the axis
normal to the film surface.

If the film is normally magnetized and assumed to be infinitely thin, the shape
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Coordinate axes for a film of a cubic single crystal magnetized normally and tangentially
to its surface. 7o is a unit vector of the normal to the film surface.

demagnetization factors, in the axes shown in Figure 2.10, are: Nj; = Njp =
Ny = 0, N33 = 4n. To find the effective demagnetization factors of the
cubic anisotropy we have to take in (2.47) po = /4 and 6y = w/2. Then
we get: NP, = —3Hp /My, N5, = Nf, = 0, N§; = —Hx1/Mp. To get
the effective demagnetization factors of the uniaxial growth anisotropy, we must
take §p = 0 in (242):: N}, = Nj, = N}, = 0, Nj3 = —2Hp,, where
Hy, = K}/My. Substituting the sums of these factors for the corresponding

N components in (1.90), we obtain the ferromagnetic-resonance frequency in a
normally magnetized film. We write the approximate expression for it in the case
of small cubic anisotropy (Ha1 < Heo):
w 1

; = e0—47TM0+2HAu"'EHAl- (2.57)

For a film magnetized tangentially, at an angle 6 with the (100) axis, the shape
demagnetization factors are: N;j; = 4w, Npo = Njp = N33 = 0. To find
the effective demagnetization factors of cubic anisotropy it is sufficient to take
o = /4 in (2.47). The effective demagnetization factors of uniaxial anisotropy
are: Ni| = —2Hay/Mo, N3, = N, = N3y = 0. The expression for the
resonance frequency is obtained by substituting the sums of these demagnetization
factors into (1.90). We write it again in the case of small cubic anisotropy:

w
= vV Heo (Heo — 47Mo + 2H ) + Ha 1 Fi(6) (2.58)

where F1(0) is given by (2.54). If H.o and M, are directed along (110) axis,
Fr=1)2.

The measurement of the angular dependence of ferromagnetic-resonance field
is the most precise and widely used technique for studying the magnetocrystalline
anisotropy. From this dependence the values of g-factor and anisotropy constants



2.4 Ferromagnetic resonance in a polycrystal 53

can be found, as well as the magnetization M if a non-spherical sample is used.
For weakly conducting substances, spherical samples are usually applied; if only
the cubic anisotropy is present and two constants are enough to describe it, then
these constants and the g-factor can be found from the measurement of resonance
field in three H. o directions, as in Table 2.2.

For a film grown so that its surface is the {110} plane, two cubic anisotropy
constants can be found at tangential magnetization of the film. If the resonance
field at normal magnetization is measured, too, and there is no uniaxial anisotropy,
the value of M can be found. In the presence of this anisotropy, only the quantity
Mo — KV /(2w Mp) can be found, as one can see from (2.57) and (2.58).

The values of the anisotropy constants, found in ferromagnetic-resonance exper-
iment, do not coincide, in general, with the values found from static measurement.
One reason, already mentioned in Section 2.1, is the difference between the con-
tributions of magnetostriction stresses in these two cases. The second reason is the
difference in contributions of the so-called fast-relaxing ions (Section 13.2). How-
ever, for ferrites with small anisotropy used in microwave devices, €.g., for YIG,
both mentioned contributions are small, and the difference between the values of
anisotropy constants, found by resonance and by static methods, is negligible.

2.4 Ferromagnetic resonance in a polycrystal

A polycrystal is an assembly of small single crystals (grains) irregular in shape,
with dimensions of 10~ to 102 cm. There are cavities (pores) between them,
which occupy often an essential part of the entire volume. Crystal axes of the
grains are usually oriented randomly. Only when special measures are taken in
preparation of polycrystalline samples, e.g., pressing or thermal treatment in a
magnetic field, the uniformity of the angular distribution of grains is broken. The
properties of such textured polycrystals approach more or less the properties of
single crystals.

We will consider only polycrystals without texture, which are, on the aver-
age, isotropic. For such media any tensor parameter, in particular, the magnetic
susceptibility, has the form

X ixa O
X=|-ixa x O (2.59)
0 0 X”

where the third axis coincides with the preferred direction, in our case, with the
direction of the steady magnetization My. Thus, all high-frequency properties of
a polycrystalline ferromagnet are determined by three quantities: X, Xq, and x||-
In sufficiently high magnetic fields, when the material is magnetized to saturation,
XJi is either equal to zero or has a small, non-resonant value (Section 1.4). So, to
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describe the high-frequency properties of a polycrystal only two quantities, x and
Xa, are usually needed. But since the polycrystal is a very complicated system,
the dependence of its parameters y and x, on frequency and steady magnetic field
differs materially from such dependence for a truly isotropic medium treated in
Chapter 1.

24.1 Independent-grain and strongly-coupled-grain approximations

At the very beginning of the ferromagnetic-resonance investigations, Van
Vleck [418] proposed to regard a polycrystal as an ensemble of independent
(non-interacting) grains, the resonance condition in each grain depending on the
orientation of the crystal axes of the grain with respect to the external magnetic
field. The applicability of such a model is based on two assumptions: disregard
of the interactions between the magnetization oscillations in different grains and
neglect of the influence of the shapes of grains and pores. A system in which these
assumptions are strictly satisfied is an assembly of single-crystal spheres situated
in a non-magnetic medium far from one another.
But suppose that the following condition holds:

Hp > 4nM, (2.60)

where Hp is some anisotropy field, e.g., Ha if the higher-order anisotropy
constants are not larger than K;. Then both mentioned assumptions are satisfied
approximately, and the model of independent grains can be applied.

To calculate x and x, for a polycrystal on the independent-grain model, we
should write the expressions for Y ¢ components in a grain with arbitrary shape and
orientation and average them. Such calculations are very difficult, if realizable,
especially if the finite linewidths (AH)o of the grains are taken into account.
Therefore, Schlémann [339] supposed that (A H ), = 0 and limited himself to the
calculation of x". Assuming a uniform distribution of grains over the orientations
(a non-textured polycrystal), he obtained

" ﬂ'M() /2 2 )
X" (w, Hp) = ——/ / 6 [Ho — Hies(w, 0, ©)] sinfdédy  (2.61)
4 O0=—n/2Jp=0

where Hpes(w, 8, ) is the resonance field of a grain, and §(z) is the Dirac delta
function (Appendix C).

The integral in (2.61) is the distribution function w(Hp) of the grains over
the values of Hy. The following properties of such functions turned out to be
useful in calculating x”: the discontinuities of w(Hy) take place at the extrema
of Hres(8, ), and the logarithmic singularities appear at the saddle points of
Hees(0,¢). I, for a cubic crystal, K; < 0 and other anisotropy constants can
be neglected, w(Ho) # 0 in the range from Humin = w/y — (4/3)|Hai| to
Hmax = w/vy + 2|Ha | (Figure 2.8), and the peak of w(H,) appears at Hy =
w/y = (1/2)[Haq|.



2.4 Ferromagnetic resonance in a polycrystal 55

:
N
|Hp ) << wiy i i |Hy | =0.35 ary

Iy
I
h
h
Iy

x/l

-3 -2 -1 0 1 2 3 -3 | 0 1 2 3
(Ho— wiy)/|Hp,| (Hy— @i)/[Hpyl

FIGURE 2.11

Ferromagnetic-resonance curves for a sphere of a cubic polycrystal with K| < 0 calculated
in the independent-grain approximation. Dashed curves correspond to (AH)o = 0 [339],
and solid curves, to a finite (A H )o value, where (A H)o is the intrinsic linewidth of grains.

The calculated curves x"'(Hp) are plotted in Figure 2.11. The allowance for a fi-
nite (A H )o results in smoothing out the singularities of these curves (Figure 2.11).
But even then the resonance curve of a polycrystal, calculated on the model of
independent grains, differs essentially from the resonance curve of an isotropic
ferromagnet or a single crystal: it has ledges on the slopes and, if the anisotropy is
large enough, has two maxima. These peculiarities were observed in ferrites with
very large anisotropy, for which the condition (2.60) was satisfied [341]. They
were also observed in ferrites with compensation points (Section 3.3) near these
points [337] where the condition (2.60) holds as well.

When (AH), is sufficiently small, the linewidth of a polycrystal, in the inde-
pendent-grain approximation, as one can see from Figure 2.11, is

2K,
AH)y ~ — 2.62
(AH)w ~ 1 (262
and the shift of the resonance-curve maximum is
1 K,
(6H )an ~ E'M“(; (2.63)

For most polycrystalline ferromagnetic and ferrimagnetic materials the con-
dition (2.60) does not hold, the experimental resonance curves do not have the
specific shapes as in Figure 2.11, and their widths are much less than it follows
from (2.62). The main reason for this is that the magnetization oscillations in
different grains are coupled with each other by the alternating demagnetization
fields. It leads to the ‘dipole narrowing’ of the resonance curves, i.e., to the
appearance of the factor

_ [Hail
47 My

& (2.64)
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in expression (2.62). This factor is usually much less than unity for ferrites applied
in microwave devices. The model of strongly coupled grains is more suitable for
such materials. The polycrystal is regarded then as a uniform medium, subjected
to a nonuniform effective field, which simulates different orientations of the grain
axes. This field leads to the coupling of the initial uniform mode, excited by the
external field, with other (non-uniform)modes. The coupling results in the transfer
of energy from the initial mode to other modes and, hence, in the broadening of
the resonance line of the initially excited mode. The theory of such process will
be studied in detail in Section 11.3. It yields, for polycrystals, the AH values
that agree on the order of magnitude with the result of multiplying (2.62) by the
factor (2.64).

2.4.2 Influence of porosity

Pores and, in some cases, inclusions of other phases are an important cause of
broadening of resonance curves in polycrystals. Porosity is the main reason
why AH values of polycrystalline YIG samples (usually, as large as ~ 50 Oe)
exceed considerably the contribution of anisotropy. Both models discussed above
may be used to explain the influence of pores: the model of independent, in the
present case, not grains but regions, and the model of non-uniform perturbation
field, which leads to the coupling of different modes. We may assume (as a
rough estimation based on the independent-region model) that, on the order of
magnitude, the linewidth is equal to the demagnetization field of pores, averaged
over the sample. This assumption leads to an approximate expression

(AH)p ~ 47TMO]) (265)

where p = V;,/V; is the porosity, V;, is the entire volume of all pores, and V4 is the
volume of the sample. The calculation carried out by Schlomann (cited in [377])
on the model of a spherical pore in the center of a spherical sample results in an
expression that differs from (2.65) by a factor of ~ 1.5. This calculation yields
also the shift of the resonance-curve maximum

4
(6H)p ~ ?”Mop. (2.66)

In Figure 2.12 the values of (AH), are plotted vs porosity for a great number of
YIG spheres. The spread of points in the figure, which is due to the difference in
dimensions and shapes of pores, is rather large. Nevertheless, the experimental
data in Figure 2.12, as well as the data of numerous other experiments, are in
agreement with the result (2.65) of the estimate based on the model of independent
regions. In reality, the magnetization oscillations in different regions of a porous
sample are, of course, not independent, and the model of strongly coupled regions
should be used. But in the case of porosity, the results of calculations based on
this model (Section 11.3) coincide on the order of magnitude with the above-
mentioned estimate on the basis of the independent-region model. The reason is
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FIGURE 2.12

Dependence of AH on porosity for YIG polycrystalline spheres [160]. Different marks
represent experimental points for spheres prepared by different methods. Measurements
were made at frequency of 9 GHz and room temperature.

that, in the case of porosity, both the numerator and the denominator of the factor
that represents the dipole narrowing contain, as distinct from (2.64), the values of
the same order of = M.

It follows from (2.65) and from Figure 2.12 that the contribution of porosity to
the linewidth of polycrystalline samples can be very large even in the materials
with not very high magnetization. Only in very dense samples (p < 1%), can this
contribution be made small. And if measures are taken simultaneously to diminish
the contribution of anisotropy and the internal linewidth of grains, then very small
values of AH can be obtained in polycrystalline samples, e.g., AH ~ 1 Oe in
YIG [311].







3

Antiferromagnets and ferrites

3.1 Antiferromagnetism and ferrimagnetism

Antiferromagnets are defined as substances in which the elementary magnetic
moments are ordered, but the spontaneous (in the absence of an external magnetic
field) magnetic moment of an elementary magnetic cell (and, hence, the moment
of any macroscopic region) is either equal to zero or has a small value, as compared
to the sum of elementary magnetic moments. The possibility of the existence of
a small moment is included into this definition because the substances with an
antiferromagnetic type of magnetic ordering but with a small average moment—
the so-called weak ferromagnets—are usually related to antiferromagnets. In
many antiferromagnets the elementary magnetic cell contains equal numbers of
the same magnetic moments aligned in opposite directions. The static and dynamic
magnetic susceptibilities of an antiferromagnet are small and (in single crystals)
highly anisotropic.

In ferrimagnets the magnetic ordering is of the same type as in antiferromagnets.
But the magnetic moment of an elementary magnetic cell has a great value, smaller
than but comparable to the sum of elementary moments. The elementary magnetic
cell of a ferrimagnet contains, in the simplest case, two groups of elementary
magnetic moments directed in opposite sides. The numbers of the moments, or
their values, or both are not equal to each other. The static and the dynamic
susceptibilities of a ferrimagnet, in contrast to antiferromagnets, are of the same
order as for ferromagnets.

The cause of ordering of magnetic moments in antiferromagnets and ferrimag-
nets is the exchange interaction of spins (Section 1.1). The exchange integrals
in (1.26), corresponding to interactions between different moments, may have
different signs. But the sign of the integral which corresponds to the strongest
of these interactions should be negative, to stimulate the antiparallel orientation
of the moments. The exchange interaction in antiferromagnets and ferrimagnets,
as well as in most ferromagnets, is mainly indirect. In nonmetallic crystals the
indirect exchange interaction via anions plays the main role [18].

59




60 3 Antiferromagnets and ferrites

”’;/lﬁ{“‘ “““ AN T
.7 KN

MrF, NiF,

FIGURE 3.1
Magnetic structures of tetragonal antiferromagnets [29). Full circles are Mn?t and Ni2+
ions, open circles are F~ ions. The Ni?t magnetic moments are slightly noncollinear.

Attemperatures higher than the Neel temperature! Ty, magnetic order in antifer-
romagnets and ferrimagnets is destroyed by thermal motion, and these substances
become paramagnets.

3.1.1 Crystal and magnetic structures

The idea of antiferromagnetic ordering was proposed independently by Landau
and Neel as a hypothesis used to explain the unusual properties of some ‘paramag-
netic’ crystals. Landau [240] suggested the model of layers of magnetic moments
directed in opposite sides. Neel proposed the ‘staggered’ order, in which the
nearest neighbors of each moment are oriented opposite to it. The magnetic
neutronography (e.g., [29]) proved the reality of antiferromagnetic ordering and
allowed the determination of magnetic structures of many substances. It became
clear that both types of antiferromagnetic order, the layered and the staggered, as
well as many more complicated types of magnetic order, do exist.

For example, in an antiferromagnetic crystal MnF,, which has the body-centered
tetragonal lattice (Figure 3.1), the moments at the apices and in the center of
an elementary cell, directed along the forth-order axis, are antiparallel to each
other. So, the Neel order is realized. The same order takes place in another
tetragonal antiferromagnet, NiF, (Figure 3.1), but the moments lie now in the basal
(perpendicular to the forth-order axis) plane. Furthermore, the angle between the
moments at the apices and in the center of the cell, in NiF,, differs slightly from 7.
So, a small spontaneous magnetization arises, and this antiferromagnet belongs to
the above-mentioned weak ferromagnets.

Magnetic structures of some trigonal antiferromagnets are shown in Figure 3.2.
For one of them, the hematite a-Fe,0;5,2 a phase transition (the change of the
magnetic-moment direction) occurs at the temperature Ty = 250 K (the Morin
point). In the temperature range Ty < T < Ty, @ -Fe;0; is a weak ferromagnet.

I'The ordering temperature for ferrimagnets is referred sometimes to as Curie temperature.

2The cubic modification of the ferric oxide, v-Fe; 03, is a ferrimagnet.
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FIGURE 3.2
Magnetic structures of trigonal antiferromagnets [29]. Full circles are Cr’* and Fe'*
jons, anions are not shown. The Fe** magnetic moments at Tv < 7' < T are slightly
noncollinear.

Another trigonal antiferromagnet MnCO; is a weak ferromagnet in the whole
range of magnetic ordering, 7' < Ty [60].

An example of antiferromagnets with the Landau ordering is the cubic crystal
(with small trigonal distortions below the Neel temperature) MnO (Figure 3.3).
In this antiferromagnet, unlike those shown in Figures 3.1 and 3.2, magnetic
ordering results in the doubling of the dimensions of the magnetic elementary
cell, as compared with the crystallographic (or crystallochemical) cell.

Most ferrimagnets, as well as most antiferromagnets, are ionic crystals. The
base of their crystal structure is the lattice of anions. Cations are located in the
voids between them. Voids occupied by cations are called cation positions (or
sites). They differ in the number N of the nearest-neighbor anions. If N = 4, these
anions form a more or less regular tetrahedron, and the site is called tetrahedral.
If N = 6, the site is called octahedral, and if N = 8, dodecahedral. The same
ions can be in different sites, and different ions can be distributed, randomly or in
regular manner, over the same sites.

Ferrimagnets, or ferrites,> with two cubic crystal structures, spinels and garnets,
and some hexagonal structures are most widely used in engineering and science.

Ferrites M*tFe3* O4 have the spinel structure (e.g., [236]). The cation M2+
can be Ni, Co, Fe, Mg, Mn or a combination of ions, as Lig 5Feé;. Other trivalent
ions, as Cr3* and AP+, can be substituted for Fe>*. Anions in spinel structure
form a close-packed cubic lattice with tetrahedral and octahedral voids. The

3Ferrites, in a narrow sense, are the combinations MFe,Oa, where M is a divalent ion. But this
term is often used, in a broader sense, for any nonmetal ferrimagnets (and sometimes, nonmetal
ferromagnets, as well).
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FIGURE 3.3

Magnetic structure of antiferromagnet MnO [29]. Full circles are Mn2+ ions, open circles
are O*~ jons. Magnetic moments lie in {111} planes. Small contraction in the (111)
direction (in magnetically ordered state) is not shown.

number of occupied tetrahedral voids (so-called A-sites) is half the number of
occupied octahedral voids (B-sites). As a result, a rather complicated cubic lattice
is formed with a cubic elementary cell containing eight formula units MFe,O;.
For oxygenous spinels, the size of elementary cell (the lattice constant) a = 8.5 A.
The local symmetry is cubic in tetrahedral sites and is trigonal in octahedral sites.
In the latter case there are four nonequivalent sites, which differ from each other
in the direction of the third-order local axis.

The distribution of cations over the sites in spinels is usually written in the form
(MgFe;_;)[M; —zFe14:04] where parentheses include the ions on tetrahedral sites
and brackets, the ions on octahedral sites. If z = 1, the spinel is called normal,
and if z = 0, it is called (completely) inversed. All ferrimagnetic oxyde spinels
are completely or partly inversed. Chalcogenide ferromagnets M'Cr, Xy (X = S,
Se; M' = Cd, Hg) have normal spinel structure [417]. Normal oxyde spinels
(M = Zn, Cd) and normal chalcogenide spinel ZnCr,Se, are antiferromagnets.

The cubic garnet structure (e.g., [138]) is even more complicated than the spinal
structure. A cubic elementary cell, with the edge larger than 12 A (12.376 A for
yttrium iron garnet or YIG), contains eight formula units R3FesO;, where R is
a trivalent rare-earth or yttrium ion. There are three types of cation sites in the
garnet lattice: tetrahedral sites with tetragonal local symmetry, four nonequivalent
octahedral sites with trigonal local symmetry, and six nonequivalent dodecahedral
sites with orthorhombic symmetry. The distribution of ions over the sites in YIG
is {Y3}(Fe3)[Fe2]O4 where braces include ions on dodecahedral sites.

The ferrites M"Fe 019, MYM;Fe;;0,,, and some others [229, 389] (where
M"' is a big divalent ion, as Ba, Sr, Pb, and M is one of the divalent ions listed
above) are highly anisotropic hexagonal ferrimagnets. The dimensions of their
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elementary cells along the main axis are ~ 50 A, while the transverse dimensions
are on the order of 5 A.

The strongest exchange interaction in the considered ferrimagnets is the indirect
interaction between cations on tetrahedral and on octahedral sites. The effective
exchange integral of this interaction is negative, which leads to antiparallel orien-
tation of the magnetic moments of these ions. Other exchange interactions may
be either ferromagnetic or antiferromagnetic.

The phenomenological, quasiclassical treatment of antiferromagnets and fer-
rimagnets is based on the sublattice model proposed by Neel [296]. According
to this model, we combine into sublattices all elementary magnetic moments
which are situated on identical lattice sites and are parallel to each other. The
magnetizations of the sublattices are defined as

1 N
M; == Zf:(‘l‘tj f) (3.1)

where (952) is the quantum-mechanical average of the elementary magnetic mo-
ment in the jth sublattice, and the summation is performed over all such moments
in a small volume V. The total magnetization is

N
M=) M, (3.2)
=1

where N is the number of sublattices.

The fitness of this model is not obvious. It is proved, in addition to some
quantum-mechanical considerations, by the agreement of numerous results, ob-
tained on the base of this model, with experimental data.

The number of sublattices N should be equal to the number of magnetic ions
in the primitive magnetic cell (i.e., in the elementary magnetic cell of the smallest
volume). For example, N = 2 for the antiferromagnets MnF, and NiF, (Fig-
ure 3.1), and N = 4 for the trigonal antiferromagnets shown in Figure 3.2. For
crystals with more complicated magnetic structures, the number of sublattices can
be rather large. For example, in YIG the primitive magnetic cell (the volume of
which is half the volume of the above-mentioned cubic elementary cell) contains
20 Fe* ions, and such must be the number of sublattices.

However, to describe approximately certain properties of antiferromagnet or
ferrimagnet, some sublattices can be combined with each other. In particular,
we can combine in one sublattice all moments with the same orientation or the
moments on the same sites, in spite of their different orientations. Eventually, we
obtain two sublattices. The two-sublattice model is strict only for antiferromagnets
with two magnetic ions in a primitive magnetic cell, as MnF; and NiF,. But this
model is often used in approximate treatment of more complicated substances.
For YIG, 12 Fe3* jons on tetrahedral sites and 8 such ions on octahedral sites can
be combined, in considering some problems, into two sublattices with antiparallel
orientations.
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3.1.2 Equations of motion and energy terms

The theory of antiferromagnets and ferrimagnets, based on the sublattice model,
can be constructed in a way analogous to the continual theory of ferromagnets
(Section 2.1). The expression for the energy density U, depending on all the
vectors Mj;, is the initial point. It is reasonable to suggest that the Landau—
Lifshitz equations hold for the sublattice magnetizations, too:

OM;

ot

where v; are the magneto-mechanical ratios, different, in general, for different
sublattices, and H.s; are the effective fields acting on the sublattices, which
are defined by the expressions analogous to (2.7) but with substitution of M;
for M. The dissipative terms R; can be written in one of the forms considered in
Section 1.4. The Gilbert form, as in (1.62), is the most convenient because it does

not contain the effective fields.
The uniform part of the exchange energy can be written now as

= —’)’JMJ X Hefy + RJ (33)

N N
1
Uexo = —EZZAJ']‘IJWJ‘M]'/ (3.4)

i=1y'=

where the constants A ; j» represent the exchange interactions between sublattices
(J # j')and inside them (j = j'). We regard these constants as scalars, attributing
the anisotropic (usually, small) part of the exchange energy to the energy of
anisotropy. The effective field of the exchange :nteraction that acts on the jth
sublattice is

N
Heo; = ZAjj’AIj' (3:5)
§'=1
If Ajj» > 0, the exchange interaction between jth and j'th sublattices stimulates
ferromagnetic ordering, and if A; j; < 0, it stimulates the antiferromagnetic order.
It is very important that the effective fields that represent the exchange interaction
between the sublattices enter the equations of motion (3.3).

The energy of magnetocrystalline anisotropy for an antiferromagnet or a ferri-
magnet must be written as a series in powers of the components M; ., , allowed
by the symmetry of the lattice. The effective fields acting on each sublattice are
found by differentiating the entire anisotropy energy with respect to the corre-
sponding M.

Two points are worth noting. First, an assumption of the additivity of sub-
lattice anisotropy energies is often made, i.e., the ‘cross-terms’, which contain
the products of different-sublattice magnetization components, are excluded from
the mentioned series. This is strictly valid only for one-ion source of anisotropy
(Section 2.2). Second, in the case of antiferromagnets, the role of magnetocrys-
talline anisotropy, as we shall see, turns out to be much more important than for
ferromagnets.
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The Zeeman energy for antiferromagnets and ferrimagnets should be written in
the form (2.15), where M is the total magnetization (3.2). The magnetic sublat-
tices in these substances are intermixed (‘put into each other’) on the microscopic
level. Therefore, the internal magnetic energy U, which is the result of the long-
range dipole—dipole interaction, also depends only on the total magnetization M.
The demagnetizing fields, acting on all sublattices, are equal to each other. For an
ellipsoid, the expressions (2.16) and (1.82) hold.

3.1.3 Ground states and small oscillations

Before studying magnetic oscillations in antiferromagnets and ferrimagnets, the
ground states, i.e., the lengths and directions of all vectors M, must be found.
At T = 0, the lengths of M ¢ are to be regarded as known, and the problem is to
find the angles 6;¢ and ;o of these vectors. This problem can be solved by the
same two equivalent ways as for ferromagnets (Section 2.1): by the minimization
of the total energy U and by the use of the conditions

Mjo X Hefjg =0 (3~6)

which follow from the equations of motion (3.3).

Some problems of this kind will be considered in Sections 3.2 and 3.3. Here
we briefly discuss only the phenomenon of weak ferromagnetism (e.g., [392]).
Dzyaloshinskii has shown [106] that the cause of this phenomenon is the presence
of energy terms which are of the same nature as the ‘ordinary’ anisotropy-energy
terms, but are minimized at angles between the vectors M o, different from those
(e.g., zero or 1) at which the exchange energy is minimal. Such terms are allowed
by the symmetry only in some crystals. This problem was studied in detail
by Turov [410]. We note only that in two-sublattice antiferromagnets, two types
of such terms, of the second order in M components, can be present:

Up = —Dzo (M, x M) (3.7)

Up = —F (M My — My My y) (3.8)

where the z-axis is the main axis of anisotropy, tetragonal or trigonal.

The anisotropic exchange interaction (Section 2.2) can lead to the term (3.7),
and the one-ion anisotropy, as Moria has shown [372], to the term (3.8). The
term (3.7), the only one allowed in trigonal antiferromagnets, is responsible for
weak ferromagnetism of a-Fe; O3 and MnCOs. The term (3.8) is allowed in some
tetragonal crystals and leads to weak ferromagnetism of NiF,.

Both terms Up and Ur have minima at the angle of 7 /2 between M, and
M,. The term (3.8) ‘demands’, in addition, these vectors to be directed at angles
m/4 and —n /4 with respect to the z-axis. The minimization of the total energy,
consisting of Up or Ur and the exchange energy Uex, results in small (because
Uex > Up, Ug) spontaneous noncollinearity of the vectors Mo and M.
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At T > 0 the lengths of the vectors Mo depend on magnetic field and tem-
perature. To find the ground state we must use now, in addition to the equilibrium
conditions, some supplementary equations. The expressions analogous to (1.18)

M;o= M](-)BJ]. (%Hefj 0) (3.9)
may be used as such equations. Here M J‘? = 7;hJ; N; is the sublattice magnetiza-
tionatT" = 0, and By, () is the Brillouin function (1.19). Solving equations (3.9)
together with the expressions, relating Hrj o to Mg, and the equilibrium con-
ditions, we can obtain, in principle, the lengths and orientations of M at given
Hegand T.

This problem can be solved easily only for temperatures very near to or higher
than the Neel temperature T. Then all M values, as well as the anisotropy
constants, are small, and it is possible, first, to neglect the demagnetizing and
anisotropy fields, and, second, to limit oneself to the first terms in the series
expansions of the Brillouin functions. Let us consider a two-sublattice antiferro-
magnet or ferrimagnet. Then the effective fields, according to (3.5), are

Hes10 = Heo+ A1 Mo+ A12My Heso0 = Heo+A12Myo+ Ay M.
(3.10)

The collinearity of H.o, Mo, and M, follows from (3.6), and, taking into
account the first terms in the expansions of Bj;, we get from (3.9) a system of
linear equations for M;q and M,q. To find the Neel temperature we must set
equal to zero the determinant of this system. Then, for an antiferromagnet with
two identical sublattices, we get (designating A;; = Ay = —Ajand A5 = —A)

Tn = C(A — A) (3.11)

where C' has the same form as the Curie constant (1.21), but all quantities, J, 7,
and N relate now to a sublattice. Solving the mentioned system for Hy # 0, we
find the paramagnetic susceptibility of an antiferromagnet

- (3.12)
=TT, ‘
where T, = —C(A — A;) is the negative paramagnetic Curie temperature (Fig-

ure 1.3).
For a ferrimagnet, taking |A 1|, |A22| < |A12|, we obtain

Tn = /C1Cy A (3.13)

where A = —A;,, and C; and C, are the Curie constants of the correspond-
ing sublattices. The temperature dependence of Xp ! is nonlinear in this case
(Figure 1.3).

In ferrimagnets, the steady sublattice magnetizations not only differ from each
other in magnitude but can differently depend on composition and temperature.
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At certain compositions or certain temperatures, the total magnetization S Mjo
can become equal to zero. Such compositions or temperatures are called magnetic
compensation points. As the sublattice magneto-mechanical ratios can also differ
from each other, the mechanical compensation points (where > Mjo/v; = 0)
do not coincide with the magnetic compensation points.

To linearize the equations of motion (3.3) we write the magnetizations and
effective fields as sums of steady and ac components and substitute these sums
into (3.3). Assuming the ac components to be small as compared with the steady
components, we obtain, in a zero approximation, conditions (3.6) and, in the first
approximation, the system of N linear equations for the complex amplitudes
. io;w
wm; + y;m; X Hefj() + ’)’ij() X hefj + —Mj'—omj X Mjo = —’)’ij() x h.

’ (3.14)
Here h.; are the complex amplitudes of the ac effective fields (without the field
which we regard as given) and h is the complex amplitude of the given ac field.
Equations (3.14) are coupled to each other, because every he; depends, in general,
on all the sublattice ac magnetizations.

Solving the coupled equations (3.14) is the basis of the theory of magnetic
oscillations in antiferromagnets and ferrimagnets. Sections 3.2 and 3.3 will be
devoted to this theory. Here we limit ourselves to some general remarks.

Setting equal to zero the determinant of 3N scalar equations that follow from
(3.14), we obtain the characteristic equation for the frequencies of free oscillations.
If we take a; = 0, the solutions of this equation will be the eigenfrequencies. We
will see below that there are always N positive roots of this equation, correspond-
ing to eigenoscillations of the considered system with N degrees of freedom.

If h # 0, the system of 3N nonuniform linear equations, obtained by project-
ing (3.14), has 3N solutions, which are complex amplitudes* of m ; components
for forced oscillations. All these components are linear functions of the h com-
ponents, and the total ac magnetization is

N
m = ij = ;h (3.15)

i=1

where  is the ac susceptibility tensor of an antiferromagnetor a ferrimagnet. If the
ac demagnetizing field is included in he , the field h is the external field, and the
tensor Y in (3.15) is the external susceptibility tensor analogous to the tensor X°
of a ferromagnetic sample (Section 1.5). If the demagnetizing field is not included
in hes j, then h is the internal ac field, and 32 in (3.15) is the susceptibility of the
substance. The difference between these tensors is small for antiferromagnets in
comparatively low steady magnetic fields. But for ferrimagnets this difference is
as essential as for ferromagnets.

4The words ‘complex amplitude’ will be omitted from here on.
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3.2 Antiferromagnetic resonance

Antiferromagnetic resonance was first investigated theoretically by Kittel [221]
and Nagamiya [294] and was discovered experimentally in 1952 by Ubbink et
al. [413]. Since then a lot of works has been devoted to the investigation of
antiferromagnetic resonance in substances with different crystal and magnetic
structures (e.g., [122]). The aim of the present section is, first, to show how
the theory, discussed in the previous section, is applied to magnetic oscillations in
antiferromagnets and, second, to expose the principal features of these oscillations.
Therefore, we limit ourselves to the simplest case of antiferromagnet with uniaxial
anisotropy and two identical sublattices.

The following assumptions are made:

1. The energy of anisotropy U,, is the sum of the anisotropy energies of the
sublattices; writing them in the form (2.31), we allow for only the first constant of
anisotropy. The anisotropy in the basal plane is also neglected.

2. The difference in the length of the Mo vectors is neglected, i.e., strictly
speaking, the case of T' = 0 is considered (Section 3.1.).

3. The demagnetizing fields are not taken into account.

As the effective fields of intra-sublattice exchange interaction do not enter the
equations of motion, we may write the total energy as

U= AM\M; — H(M, + My) + K (sin? §; + sin’ 6,) (3.16)

where A = —A;,, K = K|, and 6, and 6, are the angles of M; and M, with
respect to the axis of anisotropy (the z-axis). The magnetizations M, and M, are
uniform; so, according to (2.6),

K
’ ant, = AMa+ H+ E'wo—)zzo (M, 220) (3.17)

where MY is the length of the vectors M; and M-.

3.2.1 Antiferromagnet with an easy axis of anisotropy: steady states

Consider, first, the case of K > 0. It is clear from symmetry considerations that
the steady magnetizations M o and M, the field Hy, and the axis of anisotropy
(the z-axis) lie in one plane. The angles between the z-axis and the vectors M. 105
Mo, and H) are, respectively, 8, ¢, 620, and 8. To find the angles’ 8, ¢ and 6,
we have to set equal to zero the derivatives of U with respect to #; and 5, or use
the conditions (3.6). Both ways lead to the following necessary conditions for

3In what follows we omit the subscripts O at the angles 6, ¢ and 65 .



3.2 Antiferromagnetic resonance 69

Oy Ry 2 1 2,
Z Z Z Z z
H, Hy H, o,
M M, M M
10 My, o L8 a, 10{M20 10
-0 M,y Hy
y Sy Sy \/ H, Y M,, VY
X X X X X
My, My,

FIGURE 34
Ground states of a two-sublattice antiferromagnet with easy axis of anisotropy.

equilibrium:

A (M) sin (61,2 = 02,1) — HoMPsin (617 — 01,2) + K sin 61 5 cos 61,2 = 0.
(3.18)
When the angles satisfying these conditions are obtained, we have to find out
which of them corresponds to the minimum of energy.

Let us consider two particular cases: when the field Hy is directed along the
anisotropy axis (Hy || zo) and when Hy is perpendicular to this axis (Ho L zg).
The symmetry allows, in these cases, the ground states shown in Figure 3.4.

It follows from (3.18) that

H,
COSGH = 2—15_2—?; (319)
: Hp
0, = ———— 3.
sinf 3Hg + Ha (3.20)

where the angles 8} and 6 are shown in Figure 3.4 and the following notations
are used:

Hg = AM° Hs=K/M° (3.21)

It is easy to make sure that the energy (3.16) is minimal, for different states, in the
Hj intervals given in Table 3.1.

One can see from the table that, in the case of Hy || zo, an antiparallel state T 0
takes place in weak fields. With growing field the transition into state 1y (spin-
flop) occurs, which is the first-order phase transition. In a very narrow field
interval Ho1 < Ho < Hc (Table 3.1) both states are stable. Domain structures
and hysteresis appear in this interval. With the further increase of Hy the angle
between the vectors Mo and My decreases, and at Hy = Hg | a transition to
the state *2;| (spin-flip) occurs, which is usually a second-order phase transition.

In the case of Hy L zg, the angle between M ¢ and M>q decreases gradually
with growing Ho, and at Hy = Hg a transition from *1, state to T2, state
takes place.
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For both considered orientations of Hy, the total magnetization My =M+
M is parallel to Hy in all states, and a scalar static susceptibility xo = My/Hy
can be defined. The dependence of M, and Xo on Hy is shown in Figure 3.5. One
can see that at low fields a strong anisotropy of the susceptibility is present.

TABLE 3.1

Ground states and eigenfrequencies for a two-sublattice antiferromagnet with easy axis of
anisotropy (Hs > 0)at T = 0.

Field Ground

direc-  state Field Eigenfrequencies®
tion®  (Fig. 3.4) range’ (m=m=y
oy wa
Antiparallel O<Hy<Hc,

= Heca 4 Hy 3.22)

ty

1/2
“’71=(2f_1&;‘_’uf1§ - 2HEHA) (3.23)
Hjj|zo Noncollinear Hcl<Ho<HE|| {
w

+a, ‘%—‘=H0+H,, (3.24)
Parallel Hpg 1<Hop

H 1/2

w — 2 E 2

. ST (HCZ+HEJL1H0) (3.25)
Noncollinear 0< Hy<Hpg | 1/2

Hylz, “loo (Héz-— H;: LH&) (3.26)
42, %:,/H'_o (Ho—Ha) (3.27)

Parallel Hg  <H,

{#32=VH2H=) (Ho—Hp)}

@ 2y is a unit vector parallel to the anisotropy axis.

*Hoy=vHACHE = Ha), Hg =2Hg—H.,, Ha = K/M°,
Hcr=VHAQHg +Ha), Hp,=2Hg+H,  Hg=A/MO

¢ Braces indicate the frequencies of modes that are not excited by a uniform ac magnetic field.

For most antiferromagnets, H4 <« Hpg. Then, the difference between H
and H¢, as well as the difference between H £, and Hg | (Table 3.1) can be
ignored, and these approximate expressions can be used:

HC]EH025H0=\/2HEHA HEHgHE.L = 2Hpg. (3.28)

Taking (3.11) and (3.21) into account, we get the following estimates for an-
tiferromagnets with Neel temperatures Ty ~ 100 K and H4 ~ 10-100 Oe:
Hp ~ 10° Oe and Hg ~ 10*—10° Oe.
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FIGURE 3.5

Steady magnetizations and susceptibilities of an antiferromagnet with easy axis of
anisotropy in the field Hy parallel (subscripts |l and perpendicular (subscripts L) to the
axis. H is plotted not to scale to make the small intervals Hc, — Hciand Hg 1 — Hg\
visible.

3.2.2 Oscillations in antiparallel state

We project now the linearized equations of motion (3.14) onto the coordinate axes
and take into account (3.17). In the case of the antiparallel state +0” (Figure 3.4),
we getm ; = my, = 0and obtain a system of four equations for myz, M2z, M1y,
and my,. After transition to circular variables m;+ = m;. £m;y Gg=12),
we get two independent systems for the pairs of variables my 4, my 4+ and my _,
mo—.

[tw — iow — v (Ho + Hg + Ha)lmi+ — vHemax = —YM°hy
yHgm + + (2w — iow —y(Ho — Hg — H)lmys = yMO°hy. (3.29)

To find the eigenfrequencies we set equal to zero the determinants of sys-
tems (3.29) with a; = 0. We get two frequencies w4 and w_ given in Table 3.1.
Their dependence on Hy is shown in Figure 3.6. If Ho = 0, thenw; = w_ = wp.
The values of wq are usually rather high, e.g., fo = wo /27 = 165 GHz for CrOs.

To analyze the character of eigenoscillations we can reason in the following
way (as in Section 1.3). For the mode with frequency wy, the determinant of
system (3.29) with lower signs is not equal to zero. Therefore, this system has
only the trivial solutionm; - = my_— = Oatw = wy. Itmeans thatm;y = —Mi .
and may = —Mag, i€, @ circular precession of the vectors M; and M, with
right-hand rotation takes place. It is possible to make sure in the same way that
the mode with frequency w_ is a left-hand circular precession.

The ratios of the sublattice ac magnetizations can be found from any of equa-
tions (3.29) (with o = 0 and hy = 0) using the values (3.24) of wy or w—. If
H,4 <« Hg, these ratios are

mzj:/m]i=-—(1:FHc/H5‘). (3.30)
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FIGURE 3.6

Eigenfrequencies of an antiferromagnet with easy axis of anisotropy. Subscripts || and L
correspond, respectively, to Hy parallel and perpendicular to the axis. Hy is plotted not to
scale, as in Figure 3.5. Dashed lines relate to modes with m. = 0.

It follows from (3.30) that the total ac magnetization is small. The precession of
the vectors M and M, in the +0” state is illustrated for both modes by Figure 3.7.

To find the damping of free oscillations we must set equal to zero the determinant
of (3.29) with Ay = O but a # 0. To the first approximation (a < 1), we obtain
the same expressions (3.24) for ', and (if H4 < Hg)

wl%aw;:HE/HA. (3.31)

Comparing (3.31) with the relation w” = aw’ for the ferromagnet, we see that,
if the values of o are the same, the damping in antiferromagnet is much stronger.
However, the o values in antiferromagnets and ferromagnets can differ essentially
from each other.

Consider now the forced oscillations. The total ac magnetization m = m, +
m,, which determines all the observed effects in antiferromagnetic resonance, is
of the most interest. Solving the system (3.29), we obtain, for small dissipation
(e 1)and Hy <« Hg,

2’)’2MOHA
(wy —w) (w- — w) + 2iawyHg

Mt =M1+ +myy = ht =xshy. (3.32)

Here x4 and x_ are the tensor 'y circular components (Section 1.3). Atresonance
(Ww=wi orw=w_) we get

" _ 7M0HA
(Xi)'es T owiHgp

This quantity differs by a factor H 4 / H, from the resonance circular susceptibility

(3.33)
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FIGURE 3.7

Precession of the sublattice-magnetization vectors in an antiferromagnet with easy axis of
anisotropy in the antiparallel ground state *+0y: (a) mode with frequency w and (b) mode
with frequency w-. The difference between |m| and [ma| is exaggerated.

of a ferromagnet (Section 1.4) with the same values of w and a.
The linewidths AH 4+ (or Aw+) can be defined, analogously to a ferromagnet,
as the differences of the Hy (or w) values at which x'i = 1/2(x{ )res. If we take

again o < 1 and H4 < HE, we find
Awi _ ZO'uJi HE

AHy = = —.
* vy v Ha

(3.34)

3.2.3 Oscillations in noncollinear state

The steady magnetizations in * 1| state (Figure 3.4) are

M1 0 — (Zo cos 9” — Yo sin 9”) MO M20 = (Zo cos0u + Yo sin 9") MO.

(3.35)
Projecting now two equations (3.14) with o = 0 and hy = 0 onto the coordinate
axis, we obtain, with account for (3.17) and (3.35), a system of six equations for
the components of vectors m and m,. To get two independent systems (which
should correspond to the eigenmodes) we must pass to the components of vectors
m = m; + my and I = m; — m,. It should be noted that [ is the complex
amplitude of the ac component of the vector L = M, — M, which is referred to
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as the vector of antiferromagnetism.

One of the independent systems will contain the components m., my, and [,
and the other will contain m,, I, and ly. If we set equal to zero the determinant
of the first system, we find expression (3.25) (in Table 3. 1) for the eigenfrequency
w| 1. The dependence of w1 on Hy is shown in Figure 3.6. If we set equal to zero
the determinant of the second system, we get wj:=0.

The character of the eigenmodes in + 1| state can be analyzed in the manner
used above. For the first mode, the second of the above-mentioned independent
system has only zero solutions. Thus, for this mode (Figure 3.8)

Miz =My M1y = Moy my, = —ma,. (3.36)

For the second mode, m, = m,, = 0; the component m, is also equal to zero, as it
follows directly from the second system. This mode is an infinitely slow rotation
of vectors M and M around the z-axis. Such motion occurs without changing
the energy of the system, and that is why the eigenfrequency is equal to zero. In
reality, some factors not taken into account, e.g., the anisotropy in a basal plane,
lead to the distinction of w2 from zero. But, nevertheless, the frequency of this
mode will be small as compared with other eigenfrequencies of the system. Such
modes are called soft modes. The appearance of a soft mode in the present case
is due to the fact that the ground state *1 || breaks the cylindrical symmetry of
the energy. A general statement that a soft mode should appear, when the ground
state breaks the symmetry of the energy of the system, is known as the Goldstone
theorem (e.g., [218)).

It is clear from the character of the vector M precession (Figure 3.8) that the
mode with eigenfrequency w) is excited by the 1ransverse (with respect to Hy)
component of the ac magnetic field. The second mode cannot be excited by a
uniform ac magnetic field at all. Thus, the tensor Y for state 1 || (as well as for
state +0”) has the form (1.47). The non-zero components of this tensor can be
found by solving the system of equations for m, my,and !, withh # Oand a # 0.
It is clear that these components will pass through resonance, approximately, at
W = UJ” 1-

Solving system (3.14) for the parallel state +2”, we get two modes with fre-
quencies given in Table 3.1. However, for the second mode m = 0, i.e., this
mode cannot be excited by a uniform ac magnetic field. The first mode coincides
with the magnetization oscillations in a uniaxial ferromagnet (Section 2.3) with
the steady magnetization 2M° and the anisotropy constant K.

3.2.4 Oscillations in transverse and arbitrarily oriented fields

For the ground state *1, (Figure 3.4) we obtain, in the same way as for the
state T1 I» two independent systems of equations: in variables Mg, M, Iy and in
variables my, I, {, (Hp is directed along the y-axis). Setting the determinants
of these systems equal to zero, we obtain the eigenfrequencies of the two modes
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Precession of the sublattice-magnetization and total-magnetization vectors in an antiferro-
magnet with easy axis of anisotropy in the noncollinear ground state *1 |- Numbers denote
the positions of the tips of the vectors at successive instants.

(Table 3.1). Their dependence on Hp is shown in Figure 3.6. As my = 0 for the
first mode, this mode is exited by the transverse (with respect to Hy) ac magnetic
field component. For the second mode m; = m, = 0, and this mode is excited
by the longitudinal (parallel to Hy) ac field component. Thus, the susceptibility
tensor has the form

- X11 0 iXa
x={ 0 x2 0 | (3.37)

—ixa 0 X33

The frequency w) is the resonance frequency for the components X1 1, X33, and
X. of this tensor, and w is the resonance frequency for x22. At Hyo = HEg  the
first mode transforms into the ‘ferromagnetic’ mode in the parallel ground state
+2, . Its frequency coincides with the eigenfrequency for a uniaxial ferromagnet
(Section 2.3) with the corresponding orientation of Hp.

The eigenfrequencies for arbitrarily Ho orientations are shown in Figure 3.9.
Using these data, the antiferromagnetic-resonance spectra in a polycrystal can
be found in the approximation of independent grains (Section 2.4). This ap-
proximation is well suited for antiferromagnets if Ho < Hpg, because the total
magnetizations, both steady and ac, are small in this case. One can see from
Figure 3.9 that very broad absorption ‘lines’ should be observed in polycrystalline
antiferromagnets in both cases: of variable Hp at w = const and of variable w at
Hy = const.
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YH(

FIGURE 3.9

Eigenfrequencies of an antiferromagnet with easy axis of anisotropy for different angles
between H and the axis. Solid and dashed lines correspond to two modes. It is assumed
H4 < Hg, and the small interval Hcy — He | is not shown.

3.2.5 Antiferromagnet with easy plane of anisotropy

Consider now the case of K < 0, when M, and M, easy directions lie in the basal
plane. Only the main results will be cited in this case; the method of obtaining
them is the same as that used above.

Two ground states exist now for both Hy orientations: a noncollinear state and a
parallel state (Figure 3.10 and Table 3.2). The equilibrium angles in noncollinear
states ~ 1) and ~1 are determined by

H

cos 0“ = “ZHE _0 H; (3.38)
H

sinp; = ﬁ{% (3.39)

where Hg and H 4 are defined by (3.21), as before, but H4 < 0. Comparing
Figure 3.10 with Figure 3.4, we see that the states 1y, ‘2", and 2, do not
differ from the states * 1, "'2”, and *2 |, respectively. Therefore, the expressions
for the eigenfrequencies in all the mentioned states with K < 0 are the same as
in the corresponding states with K > 0 (Table 3.1). The difference is, however,
in the sign of Ha. As a result, the actual dependence of w1 on Hy in the
state 1) (Figure 3.11) differs from such dependence in +1" state. It coincides
approximately (if [H4| < Hg) with w, | vs Hy dependence in the state *1
(Figure 3.6).
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FIGURE 3.10
Ground states of a two-sublattice antiferromagnet with easy plane of anisotropy.

The state ~ 1, for K < 0 and Hj lying in the easy plane, is an essentially
new one. The eigenfrequencies in this state are given in Table 3.2, and their
dependence on Hy is shown in Figure 3.11. The character of oscillations of the
vectors M; and Mj in this state is illustrated by Figure 3.12. For the mode with
frequency w, 1, the components mg, M., and I, exist, and this mode is excited
by the transverse component of ac magnetic field (with respect to Hy, which is
directed along the y-axis). The second mode, with m,, 1., and [, not equal to
zero, is excited by a longitudinal (parallel to Ho) ac field.

TABLE 3.2
Ground states and eigenfrequencies for a two-sublattice antiferromagnet with easy plane
of anisotropy (Ha < 0)atT = 0.

Field  Ground
direc-  state Field Eigenfrequencies
tion®  (Fig. 3.10) range® (m=7=")

-1y Expression for w
Noncollinear O0<Ho<2HEg+ |Ha |

Hy|zo coincides with (3.23)
Pa—r :llllel 2ot |Ha| <Ho Expression for w)
coincides with (3.24)
- Wil = Hoy/1+ Al (3.40)
Holz Noncollinear 0<Ho<2HE Q’Jy'z _ (2HE | a|— J{%%H3> 2 341
p; iﬁel DHa<Hs Ex'pre'ssion for Wi
coincides with (3.27)

a 2, is a unit vector perpendicular to the anisotropy plane.
bH 4 = K/M® Hp = AMY; it is assumed that |[Ha| < Hg.
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FIGURE 3.11

Eigenfrequencies of an antiferromagnet with easy plane of anisotropy at Hy || 2o (sub-
scripts ||) and Ho L 2o (subscripts L) where 2 is a unit vector of the normal to the easy
plane. Dashed lines relate to the modes with m = 0. Dotted lines correspond to a small
distinction of the angle between Hy and 2o from /2.

Thus, the frequencies w , in different ground states 1, and ~ 1, do not differ
strongly from one another. On the contrary, the behavior of the frequency w; 1 in
~ 1, state has no analog in the case of X > 0. This frequency approaches zero at
Hy — 0. Such an important feature of the considered mode is due to the fact that
the angle between M; and M, (Figure 3.12) does not change in the precession of
these vectors. The antiferromagnetic resonance, in this case, can be and really was
observed at rather low frequencies in weak steady magnetic fields (e.g, [300]).

Another peculiarity of the antiferromagnetic-resonance spectrum for K < 0 and
Hy, lying in the easy plane, is a crossover of the branches, i.e., the degeneration
of the modes at H & H¢ (Figure 3.11). The degeneracy is removed with the
deflection of Hy from the easy plane.

The anisotropy in the basal plane influences materially only the first mode for
K < 0and Hy lying in the easy plane. It results in the appearance of a gap in the
spectrum, i.e., leads to a finite w, ; value at zero field. This value depends on the
angle between Hj and a certain direction in the basal plane. It should be noted
that the gap can appear due to other factors, as well, e.g., due to the magnetoelastic
interaction (Section 12.2).

Consider now the influence of a weak moment (i.e., of the noncollinearity of the
sublattice steady magnetizations, Section 3.1) on the magnetic oscillations in the
antiferromagnet with an easy plane of anisotropy and Hy lying in this plane. The
energy term (3.7) does not lead to a qualitative change of the ground state 1
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, @ (b)

FIGURE 3.12

Precession of the sublattice-magnetization and total-magnetization vectors of an antiferro-
magnet with easy plane of anisotropy in the ground state ~ 1 (Figure 3.10) for modes with
frequencies (a) w1 1 and (b) w1 2. Numbers are as in Figure 3.8.

(Figure 3.10), but now
Hy+ Hp
2Hg

where Hp = DM?. The term (3.8), in contrary to the term (3.7), is not invariant
under rotations around the z-axis. Therefore, this term, aside from the fact that it
stimulates a certain angle between M) o and M, is a source of the anisotropy in
the basal plane. If, for simplicity, we suppose Hy to be directed along the y-axis,
the ground state will remain qualitatively the same as in Figure 3.10. Then, the
effective field Hp = F M° will appear in (3.42) instead of Hp.

In the case of the term (3.7), the eigenfrequency of the first mode (for small
w1)is

sing, = (3.42)

2
(%) = Hy(Hy + Hp) (3.43)

and in the case of the term (3.8),

2
(%) — (Ho + Hr) (Ho + 4H). (3.44)

Comparing these expressions with (3.30), one can see that the allowance for
weak ferromagnetism results in an essential change of the spectrum of the mode,
for which there was no gap. In the case of the term (3.7), the spectrum changes
but remains without a gap. In the case of the term (3.8), a gap appears, as one can
see from (3.44).

We have considered the antiferromagnetic resonance in the simple case of a
uniaxial two-sublattice antiferromagnet at T = 0, without taking into account
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the shape anisotropy of the sample (i.e., assuming it to be a sphere), and without
regard for the sample dimensions. The study of more complicated cases is beyond
the scope of this book. We limit ourselves to some brief remarks.

The shape of the sample, assuming it to be a small ellipsoid, can be taken into
account, in magnetostatic approximation, in the same way as for a ferromagnet
(Section 1.5). However, the magnetizations of an antiferromagnet, both steady
and ac, are small if Hy « Hpg. Therefore, in such fields the influence of the
sample shape on the antiferromagnetic resonance may be neglected.

The requirement for the sample dimensions to be small, as compared with
the electromagnetic-wave length, is the condition for the applicability of the
magnetostatic approximation. As the antiferromagnetic-resonance frequencies
are usually very high (lie in the millimeter or submillimeter wavelength ranges),
this requirement is difficult to fulfill in experiment.

The next remark concerns the influence of temperature. At T > 0 the sub-
lattice magnetizations Mo and M, differ from M? and, in general, from each
other. If their values are found, the above-considered theory of antiferromagnetic
resonance can be applied almost without changes. It is necessary only to use the
values of the parameters vy, H4, and Hg, at a given temperature and to take into
account the difference between Mo and M;o. We cite here only the expression
for eigenfrequencies in the antiparallel state *0, found (at H4 < Hg) with
allowance for this difference [122]:

“J—iz,/zHAHE+Hg@ ng(l—é). (3.45)
vy 4 2

Here Hy and Hp are defined according to (3.21) but with substitution of
VMM for MO, and 8 = A(M]() - Mzo)/Ho = X0||/X0.L where Xo||
and xo . are the steady susceptibilities for Hy directed, respectively, along and
perpendicular to the axis of anisotropy. The quantities v and Hg are almost
independent of temperature. Therefore, the actual temperature dependence of
antiferromagnetic-resonance frequencies is determined by the temperature depen-
dence of xo| and H 4.

The last remark is related to antiferromagnets with more complicated magnetic
structures. The number N of the sublattices, which is equal to the number of
magnetic ions in a primitive magnetic cell (Section 3.1), can be rather large in
such substances. The number of eigenmodes in each ground state is always
equal to the number of sublattices. However, as it has been already mentioned in
Section 3.1, some sublattices can be combined with each other to form ultimately
two sublattices with antiparallel magnetizations. Then the above-discussed two-
sublattice theory can be used. It yields, sometimes to a high accuracy, the spectra
of two modes with the lowest frequencies. But the remaining (N — 2) modes are
lost.

In conclusion, we point out the peculiarities of antiferromagnetic resonance, as
compared with the ferromagnetic resonance.
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1. In antiferromagnets, there are several different ground states in different ranges
of Hy; in every state there are as many modes as there are magnetic ions in a
primitive magnetic cell.

2. The character and the value of the magnetocrystalline anisotropy influence ma-
terially the antiferromagnetic-resonance spectra; the contribution of the anisotropy
is determined, as a rule, by the geometrical mean of the anisotropy field and large
exchange field.

3. Antiferromagnetic-resonance spectra have, as a rule, gaps (finite frequencies at
zero steady fields); only one of the branches for Hy, lying in an easy plane of
anisotropy, has no gap; the frequency increases for some branches, and decreases
for others with growing Hy.

4. The ac susceptibility-tensor components in antiferromagnets have small values
in not very high steady magnetic fields.

The last peculiarity does not exclude, however, the possibility of antiferromag-
nets to be used in magnetic devices for the high-frequency part of the microwave
range.

3.3 Magnetic oscillations in ferrimagnets

The theory of ferromagnetic resonance considered in Chapters 1 and 2 is appli-
cable with some restrictions, as we will see, to one of the oscillation modes in
ferrimagnets, just to the mode used in practice. The aim of the present section is
to prove this statement and to discuss the restrictions.

3.3.1 Ground states of two-sublattice ferrimagnet

In contrast to antiferromagnets, the study of ferrimagnets (excluding the regions
near the compensation points) can be performed, in the first approximation, with-
out allowance for the magnetocrystalline anisotropy.

Consider, according to Schlémann [342], the ground states of a two-sublattice
isotropic ferrimagnet.® The energy density can be written as

1 1
U= —EAI | M? - §A22M22 — A oMM, — Hy(M; + M>) (3.46)

where A1, A2o, and Aj, are the constants of the exchange interaction inside
sublattices and between them. Limiting our consideration to the zero temperature,
we will regard the lengths of the vectors M; and M, as given. To find the
equilibrium orientations of these vectors we set equal to zero the derivatives

6This problem was first solved by Tyablikov [412] on a microscopic model.
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FIGURE 3.13

Equilibrium angles of the sublattice magnetizations, the total steady magnetization, and
the static susceptibility of an isotropic two-sublattice ferrimagnet vs steady magnetic field.
Mo = 1.5M>y.

of (3.46) with respect to 6; and 6,. We get that either sin#, = sin6, = 0 or

_H}+H,H_ _H!-H.H_
CcOS 9] = m-— 00892 = m (347)

where A = —Ay;, and Hy = A(Mo £ M) are the so-called exchange fields.
It is easy to see that

Miosinéy = —Mjgsinb,. (3.48)

One can make sure that the energy (3.46) is minimal at 8, and 6, values givenin
Table 3.3. These equilibrium values are plotted vs Hy in Figure 3.13. In ferrites,
usually, A 2 10%, and the first exchange field H_ ~ 105 Oe, the second exchange
field H  is several times larger.

TABLE 3.3
Ground states of isotropic two-sublattice ferrimagnet at 7 = 0.
Ground state  Field range® Equilibrium values of 6, and 6, (Figure 3.13)
Antiparallel 0< Hy < H_ 610=0 b=
Noncollinear H_ < Hy < Hy Formulae (3.47)
Parallel H,y < Hy Blo=60=0

“Hi = A(Myg = Mayy).

It follows from (3.48) that the total steady magnetization My = Mo + M>,
is always parallel to Hy. The dependence of My and xo = My/Hy on Hy is also
shown in Figure 3.13.

To find the ground states at T > 0 it is necessary to take into account the
temperature dependence of M ¢ and M,,. If the larger (at T' = 0) magnetization
decreases faster with growing temperature than the smaller one, then a temperature
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compensation point (Section 3.1) appears. A typical example is the rare-earth
garnets (e.g., [447, 138]), in which the magnetization of the dodecahedral (rare-
earth) sublattice decreases faster with growing temperature than the magnetization
of the combined (tetrahedral plus octahedral) iron sublattice.

3.3.2 Oscillations in antiparallel ground state

As we do not take into account for the present the demagnetizing fields and mag-
netocrystalline anisotropy, the effective fields that enter the equations of motion
are, according to (3.46),

He1o=Ho— AM,;. (3.49)

Projecting the equations of motion (3.14) onto the coordinate axes and passing to
the circular variables, we get

[fw — v (Ho + AMyo) — iajwimi + — iAMioma+ = —nMyohy

Y AMom 4+ + [fw — 72 (Ho — AM10) + icow] ma + = v2Maoh+. (3.50)

Setting the determinant of this system with a;; » = 0 and hy = 0 equal to zero,
we obtain the equation for the eigenfrequencies:

w? £ w[A(2M10 — 1Mag) — (v + 72) Hol

— Y172Ho [A (Myo — Mao) Hol (3.51)
® N>"
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FIGURE 3.14
Eigenfrequencies of a two-sublattice ferrimagnet in the antiparallel ground state.
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FIGURE 3.15

Precession of the sublattice magnetizations of a ferrimagnet in the antiparallel ground state
for (a) the ‘ferromagnetic’ and (b) exchange modes. A small difference between the values
of m| - and m; _ is not shown.

The signs + in (3.51) correspond to the two modes of eigenoscillations. It is
appropriate to replace these signs by the single sign +. Then we obtain an
equation the roots of which represent the frequency w.. of the first mode and the
frequency of the second mode with reversed sign (—w_). It is easy to make sure
that it will be the equation of hyperbolas in (w, Hy) plane (Figure 3.14). The form
of the hyperbolas depends on the value of (y; — y,); if 41 = 72, the hyperbolas
transform into a pair of parallel straight lines. Of course, only the segments of the
hyperbolas in the limits 0 < Ho < H_ have physical sense because only in these
limits the ground state is the assumed antiparallel state. As the eigenfrequencies
must be positive, the segments with w > 0 give the frequencies w., and those
withw < 0 give (—w_). One can see from Figure 3.14 that the dependence of w ,
as well as of w_, on Hy is, in general (y; # =), nonlinear. The frequency w_ is
high at Hy = 0 and decreases with growing Hy. At Hy =~ H_ /2 the degeneration
of the two modes occurs.

Approximate expressions forw, and w_ (when Hy < H_), obtained by Wangs-
ness [434], have the form

~ Mo — Mg
Mo/m — Mao/7

w4 Hoy = ~esHo (3.52)
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FIGURE 3.16

Effective parameters of ferrimagnets with (a) compositional and (b) temperature compen-
sation points. (a) Garnet YsFes_,Ga,012, T = 77 K; g-factor of the tetrahedral sublattice
g1 was calculated assuming g-factor of the octahedral sublattice g, to be independent of
z [331]. (b) Garnet Gd3FesOi2; A H values are for H || (111) [329).

Miova/v — Mo/ 72
Mio/v — Mao/v

The quantity ~.r in (3.52) is the ratio of the total steady magnetic moment to the
total steady moment of momentum.

It is easy to make sure, in the same way as for antiferromagnets (Section 3.2),
that the mode with frequency w is a right-hand circular precession, and the mode
with frequency w_ is a left-hand precession around the direction of Hy and My
(Figure 3.15). The ratios of the amplitudes of the sublattice ac magnetizations for
these modes (if Hy <« H_) are

wo A (Mg — M)~

Hy = wg —74Ho. (3.53)

miy+ ., Mo m- . mn

my 4 Mg m. M

o2

(3.54)

The first relation (3.54) means that the vectors M and M are always antiparallel
to each other. No work is done against the exchange forces in such a movement,
which is why the exchange constant A does not appear in expression (3.52). For
the second mode, the vectors M; and M, do not remain antiparallel, and the
frequency w_ essentially depends on A. This mode is called the exchange mode,
and the first one (with frequency w, ) is called the ferromagnetic mode.

It follows from (3.52) that the frequency w. tends to zero when approaching
the magnetic compensation point and tends to infinity when approaching the
mechanical compensation point. The frequency w_, which, at low Hy values,
lies usually in the infrared region, decreases when approaching the compensation
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points, so that it can appear in the microwave region. Although formulae (3.52)
and (3.53) hold (approximately) only under condition Hy < H_ = A(M;o —
M3y), i.e., far from the compensation points, the mentioned tendencies agree with
the experiment (Figure 3.16). However, the theory of magnetic oscillations in
ferrimagnets near the compensation points, as the antiferromagnetic-resonance
theory, can be developed only with allowance for the anisotropy (see, e.g., the
paper by Geschwind and Walker [136]).

3.3.3 Oscillations in noncollinear ground state

The steady sublattice magnetizations for the noncollinear ground state (Table 3.3)
can be written in the form

Ml,20 = (Zo 00501,2 + yo sin 91’2) Ml,20 (3.55)

where the angles 8, and 6, are determined by (3.47). Projecting the equations
of motion (3.14) with a; 2 = 0 and h = 0 onto the coordinate axes and taking
into account (3.49) and (3.55), we obtain a set of six uniform linear equations for
the components of m; and m;. Limiting ourselves, for simplicity, to the case
1 = 72, we get from the mentioned system the following equations for the vector
m = m; + My components:

%mz + Hoymy =0 — Hym, + }:yuimy =0 %mz =0. (3.56)

It follows from these equations that two modes are possible. For the first mode,
wy = vHp (Figure 3.17), my, = —im,, and m. = 0. For the second mode,
w2 = 0 and m; = my = 0. The appearance of the mode with zero frequency
(a soft mode) could be expected because the ground state breaks the cylindrical
symmetry of the energy.

Equations (3.56) and the frequency w; = v Hj coincide with the corresponding
expressions for a ferromagnet (Section 1.3). Thus, in the noncollinear state, as
in the antiparallel state, there exists a ‘ferromagnetic’ mode. The character of
precession of the sublattice-magnetization vectors M; and M can be found with
the use of the initial equations for the components of 7, and m,. For the second
(soft) mode, an infinitely slow precession of both vectors M| and M) around the
z-axis takes place. For the first mode, the tips of these vectors move along the
ellipses, but the projections of the ellipses on the zy plane are circles, as well as
the trajectory of the tip of the total magnetization vector M. One can assure that,
for the first mode, the angle between the vectors M and M, does not change in
the precession; and that is why the frequency of this mode is independent of the
exchange constant.

One of the modes in the third (parallel) ground state (Table 3.3) coincides with
the oscillation mode for a ferromagnet with the steady magnetization M ¢+ M.
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FIGURE 3.17
Eigenfrequencies of a two-sublattice ferrimagnet with 1 = 72. Dashed lines correspond
to modes with . = 0.

3.3.4 Damped and forced oscillations

Let us limit ourselves to the oscillations in the antiparallel state. Then, to con-
sider the influence of losses, we have to set equal to zero the determinant of
system (3.50) with a; » # 0. Assume o and a; to be less than or of the order
of unity. Assume also that the steady magnetic field is sufficiently low and we
are far from the compensation points, so that the conditions Hyp < H_ and (for
the first mode) w <« <, H_ are satisfied. Then, for the first mode, we find

H,
W = AT (3.57)
1+ af
W' = aepw’ (3.58)
where 7. is determined by (3.52) and
a M as M.
= & 1o/m+ 20/’)’2' (3.59)

Mio/m — Mao/72

According to (3.61), s tends to infinity at approaching the mechanical compen-
sation point.

The damping of the mode with frequency w_ can be treated in the same manner.
Assuming a; > < 1 and, as before, Hyp < H_, we get an expression analogous
to (3.58) but with a somewhat different effective dissipation parameter.

Consider now the forced oscillations, again in the antiparallel ground state.
Solving system (3.50) with the upper signs in the presence of an ac field h, we
find my = mi4 + may = X+ hy, where, with the same assumptions as before
(Hy < H_and 12 £ 1), we get

L= Yef (M10 — M2o)

- . (3.60)
Wi — W+ 10w

This result is of great importance: (3.60) coincides with the expression for the
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circular susceptibility of a ferromagnet [which is obtained from (1.49) with the
substitution (1.68)] if we replace M, by (M1 — Mj30) and substitute ~es and Qief
for v and a.

It follows from (3.60), with regard for (3.52) and (3.59), that

thlMl o/ 1 + axMao/7,
Mo — M,y ’

The linewidth (3.61) increases with the approach to the magnetic compensation
point. It should be noted that this increase, as well as the increase of Aw — 20w
at approach to the mechanical compensation point, is a phenomenological effect
not related to any new relaxation mechanism.

If v1 and -y, differ only slightly from each other, so that the magnetic and the
mechanical compensation points are very near to each other, then both AH and
Aw increase in the field or frequency range in which the compensation points lie
(Figure 3.16). But if there is a great difference between 71 and 7y, then large s
values can be observed at a mechanical compensation point where the A H value
is small. This effect was observed [250] in the garnet EusFes_,Ga,0;.

Solving system (3.50) with lower signs at Hy <. H_ and ajz < 1, wecan find
the susceptibility x _ to be proportional to (y; — 12)2. The difference between Y
and 7, is usually small. Therefore, the ferrimagnetic resonance for the exchange
mode, with frequency w_ (which lies in the infrared range), is a weak effect.
However, it was observed in rare-earth garnets [360].

An arbitrary transverse ac field is the sum of fields with right-hand and left-
hand circular polarizations. Each of them excites ac magnetization with circular
polarization and the corresponding direction of rotation. As the eigenfrequencies
w4 and w_ differ strongly from each other (except in the small regions near the
compensation points or near Hy = H_ /2), the magnetizations m, and m_, as a
rule, are not exited simultaneously.

We have not yet taken into account the demagnetizing fields. So, the considered
quantities x4 and x_ are components of the susceptibility X of a substance (a
ferrimagnet). The transition from }? to the susceptibility X of a small ellipsoidal
sample is a magnetostatic problem, independent of the properties of the substance.
Therefore, all expressions for the eigenfrequencies and X © components, obtained
in Section 1.5, will be valid for a ferrimagnet with the effective parameters.

The above-considered theory of magnetic oscillations in ferrimagnets is valid,
furthermore, only at T' = 0, if we regard the parameters M. j0. V5> and a; as given
quantities, which are independent of temperature. But if we take into account the
temperature dependence of all parameters, the theory will be valid at 7" > 0, too.
The lengths of the sublattice steady magnetization vectors M ;0, and, hence, the
length of the total magnetization vector My, depend now on temperature and must
be found, together with the directions of these vectors, as mentioned in Section 3.1.
For the ‘ferromagnetic’ mode in low fields and far from compensation points, the
only parameters for which the temperature dependence s, practically, to be taken
into account are: the total magnetization M, the effective dissipation parameter

AH =2

(3.61)
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aef, and also the effective anisotropy constant (see below).

To take into account the magnetocrystalline anisotropy in ferrimagnets we have
to add the energy terms that describe the anisotropy to the energy (3.46). It is
often assumed, as in the case of antiferromagnets, that the energy of anisotropy is
the sum of anisotropy energies of sublattices.

In the most important case of the ‘ferromagnetic’ mode, at Hy < H - and far
from compensation points, we obtain for the eigenfrequencies and X components
the same expressions as for ferromagnets, but the anisotropy constants in these
expressions are the effective constants. If the additivity of sublattice anisotropy
energies takes place, the effective anisotropy constants are, simply, the sums of the
corresponding sublattice constants. The effective anisotropy fields are obtained by
dividing the effective anisotropy constants by the total magnetization Mo — Myo.
These fields increase with the approach to the magnetic compensation points
(Figure 3.16).

Far enough from compensation points (or if there are no such points in the
considered ferrimagnet), the influence of the magnetocrystalline anisotropy is, in
common with ferromagnets, a first-order effect, the oscillations in an isotropic
medium being the zero approximation. The angular dependence of the resonance
frequencies or fields are then the same as for ferromagnets. That is why the
experimental data obtained in ferrimagnets RbNiF; and Y3FesOj; have been
used in Section 2.3 (Figures 2.5 and 2.8) to illustrate the angular dependence
of the ferromagnetic resonance fields. But near the compensation points the
magnetocrystalline anisotropy, as it has been already mentioned, should be taken
into account in the zero approximation, no matter how small the anisotropy is.

The equivalence of a ferrimagnet—under certain conditions—to a ferromagnet
holds for an arbitrary number of sublattices. The sublattice steady magnetizations
may even be noncollinear, but the total magnetization Mo = | 3_ M| should be
large. Turov has shown [410] that in this case there always exists a ‘ferromagnetic’
mode, for which, in a sufficiently weak steady magnetic field, the ‘bunch’ of the
sublattice-magnetization vectors precesses, as a whole, around the M direction.

Ferrimagnets are the only magnetic materials widely used presently at mi-
crowave frequencies. Therefore, it is very important that, under the above-
mentioned conditions (which are usually satisfied in practice), ferrimagnets are
equivalent to ferromagnets. We can ‘forget’ that they are ferrimagnets and apply
all the results of the comparatively simple ferromagnetic-resonance theory.

However, the following peculiarities of magnetic oscillations in ferrimagnets
are to be kept in mind:

1. In addition to the ‘ferromagnetic’ mode, there exist (N — 1) exchange modes
(N is the number of sublattices), the frequencies of which, in weak steady magnetic
fields, lie usually in the infrared range.

2. In strong steady magnetic fields, on the order of AMp, the frequencies of the
‘ferromagnetic’ and the exchange modes become comparable and both depend on
the exchange constants.
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3. In the vicinity of compensation points, the frequencies of the ferromagnetic
and the exchange modes draw near and depend on the exchange constants even in
weak steady fields; magnetocrystalline anisotropy influences here essentially the
frequencies and the character of oscillations.

4. In the range of steady magnetic fields from H_ = A(M;q — M) to Hy =
A(M;o + Mao) (in the case of two sublattices) the ground state is noncollinear,
a soft mode appears in this range in addition to a ferromagnetic mode.



4

Fundamentals of electrodynamics of
gyrotropic media

4.1 Equations

In the preceding chapters we considered the behavior of ferromagnets, antifer-
romagnets, and ferrimagnets in given ac magnetic fields and obtained the tensor
magnetic susceptibilities of these substances. However, the ac magnetic field
cannot be, usually, regarded as given; it is to be found, together with the ac mag-
netization, by solving the corresponding electrodynamic problem. The simplest
of such problems was already treated in Section 1.5. The magnetostatic approx-
imation was applicable in that case, and a well-known solution of magnetostatic
equations was used. We now pass to the general case when full Maxwell’s equa-
tions, together with boundary conditions, are to be used.

The aim of the present chapter is to discuss the peculiarities of Maxwell’s equa-
tions, as well as some methods of solving them and some general consequences of
them, for the case of gyrotropic media. We define a gyrotropic medium as having
nonsymmetric tensor parameters  and . In this and two following chapters the
components of these tensors will be assumed to depend on w, Hp, and My but
not on the wave vector k. The dependence on k, i.e., the spatial dispersion, will
be taken into account in Chapter 7.

4.1.1 General equations and boundary conditions

The fundamental equations of macroscopic electrodynamics, the Maxwell equa-
tions (e.g., [246, 191]) are

rotE+la—Bi=0 divB =0
c Ot

ol — 192 _ 4, divD = 47 R. 4.1)
c Ot c

91
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Here E and D are the macroscopic electric-field and electric-displacement vectors,
H and B are the macroscopic magnetic-field and magnetic-induction vectors, and
J and R are the free electric-current and electric-charge densities. The quantities
E and B are the space and time averages of the microscopic fields, respectively,
electric and magnetic. The vectors D and H in (4.1) are defined as

D=E+4rP H=B-4rM (4.2)

where P is the polarization, i.e., the electric-dipole-moment density, and M is
the magnetization, which we dealt with in the previous chapters. The equation of
charge conservation follows from (4.1):
OR
divJ + — =0. 4.3
v+ = (4.3)
The boundary conditions, which hold for the field vectors in two adjacent media
at their interface, follow also from the Maxwell equations (4.1) and can be written
in the form

4
E]Xno—E2Xn0=0 H]Z('I!,()—Hz)(’ng:%l
Dino — Dyng = 41 Bing— Byng =0 (4.4)

where ny is a unit normal to the interface directed from the first medium into the
second; 7 and I are the surface densities, respectively, of the electric charge and of
the current. For real media, 77 and I are equal to zero, but they are introduced for
an interface of dielectric and metal. Now, the following conditions are satisfied,
to a first approximation, by the fields in dielectric

4
Eixng=0 Ding=4my Hlxnoz—clrl Bing=0. (4.5)

To obtain a complete systems of equations the material equations are to be
added to Maxwell’s equations (4.1). The material equations reflect the properties
of the considered substances and can be found from theories that describe these
substances or from experiment. As the charge density is related to the current
density by equation (4.3), it is sufficient to take into account the material equations
that express the dependence of D, B, and J on E and H. It should be noted
that in some cases, e.g., for metals (Section 14.2), it is impossible to consider
separately the problems of obtaining the material equations and of integrating the
Maxwell equations. But for weakly conducting ferro- or ferrimagnets magnetized
to saturation, these problems can be separated. The Landau-Lifshitz equation
of motion, as well as the expressions for the tensor X components, which are
obtained by solving this equation, can be regarded as material equations for such
substances.

The magnetic field in our case is a sum of the steady and ac fields. Suppose
all the quantities in (4.1), including electric field, to be such sums. Assume that
the ac components k., e, b, d..., p~, and j. are small as compared with the
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steady components, respectively, Ho, Eo, Bo, Do, Ro, and Jo. Then, if the given
fields and currents vary harmonically with time, all ac quantities have such time
dependence, and we can use the method of complex amplitudes (Section 1.3).

Substituting the sums of steady and ac components of all quantities into (4.1),
we obtain two independent systems of equations: for steady components and,
according to the method of complex amplitudes, for the complex amplitudes of ac
components. The first system, in its turn, divides into two independent systems:
the electrostatic and the magnetostatic, which has the form

rotHy = 4%rJo divBy = 0. (4.6)
The system for the complex amplitudes of the ac quantities' is
rote + ikgb = 0 (4.7
roth — ikod = 4—:—]' (4.8)
divb =0 (4.9)
divd = 4mp (4.10)

where ko = w/c. The boundary conditions for the ac components are of the same
form as (4.4) or (4.5).

Consider now the material equations for ac components. Neglecting the small
‘mixed’ terms, assume that d depends only on e, and b depends only on h. Then,
for small amplitudes (in linear approximation)

d=c4e (4.11)

b=ph (4.12)

where ¢ g is the dielectric constant (which can depend, nevertheless, on frequency,
temperature, etc.) and p is the permeability, which was considered in detail in
the preceding chapters. The current density can be written as

J = o€+ jex (4.13)

where o is the high-frequency conductivity (j = ve is the Ohm law). The
quantity jex is the density of an external current, which is excited by the fields
not taken into account explicitly in the considered problem.

Using (4.11)-(4.13), we can exclude d, b, and j from Maxwell’s equa-
tions (4.7)—(4.10) and obtain

rote + ikoh =0 (4.14)

- 47 .
roth — ikpce = %]m (4.15)

!'Later on we will omit, as in the preceding chapters, the words ‘complex amplitudes’.
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div (ﬁh) =0 (4.16)
div (?e) = 47 pey (4.17)
where pext = (i/w)divjex and
€ =%4— ik (4.18)
w

The tensor ¢, as distinct from € 4, will be called permittivity. We can exclude e
or h from (4.14) and (4.16) to obtain a second-order differential equation for each
of these vectors.

Let us introduce designations for the tensor 1z components. (Analogous desig-
nations can be introduced for the components of the tensor ¢.) Represent  as a
sum of a symmetric 1z and an antisymmetric 7 s tensors. The components of the
former are

(Hs)pg = (Hs)gp = Hpq = ll’;oq - il"';;q pa=123=zy,2 (4.19)
and the components of the latter are

(Kas)pg = —(Has)ap = ifta pg = i(Ha pg — g pg) PFq (4.20)

where all the quantities i, fpg, Ky pg» and gy ,, are real. Three tensor Thas
components pq 12, fa23, and p, 31 can be regarded as components of the vector

47 G, where Gy, is the magnetic gyration vector (1.44). Then,
b= jish +id4Th X Gyp. (4.21)

The tensor z can be also represented as a sum of a Hermitian (&y) and an
anti-Hermitian (1,u) tensor with components

(MH)PQ = p’;q + lll‘:z Pq (l‘La-H)PQ = I‘l‘::pq - lu’;;q (422)

4.1.2 Equations for bigyrotropic media

Consider a medium which is isotropic in the absence of steady magnetization.
The only preferred direction is then the direction of My, and the parameters of
such a medium have the form

m ipe O € ieq O
w=|—ige pn 0 e=|—-ie, ¢ O (4.23)
0 0 By 0 0 €l

(the third axis is directed along Mjy). For polycrystalline ferrites in microwave
range, € can be regarded as a scalar. In visible light and at higher frequencies,
differs only slightly from unity. Nevertheless, we will deal with the medium the
tensor parameters of which have simultaneously the form (4.23). The main reason
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for con51dermg such a medium (we call it bigyrotropic) is that the antisymmetric
components of € and of & can be of the same order for ferrites in the infrared range
and for some ferromagnetic semiconductors, even at microwave frequencies.

Let us consider the peculiarities of the electrodynamic equations for the medium
with parameters (4.23) in the case of jexx = 0. Excluding the transverse (with
respect to Mp) h and e components from the projections of Maxwell’s equations,
we get the following equations for the longitudinal components:

e|l 9?2 e\ O
(VZ = 32 + k(,s”/u) e. + kop)| ( + 7) —zhz =0
o2 o <\ O
<V2 + — al W 0z ") + koEJ.I.t”) h, — k‘o&‘" (E + &—) —Zez =0 (4.24)

where

€] =& —

™
o |

2
pL=p-te (4.25)
o
Here V | is the Hamilton nabla operator in the zy plane:

0 0 8? o?
Vl—wog"-f-y()ay Vi=@+a—y2

It follows from (4.24) that the TE field (with e, = 0 and h, # 0) and the TM field
(with h, = Oand e, # 0) cannot exist in a gyrotropic medium except if 3/5z = 0
As to the TEM field, its existence is not forbidden by equations (4.24).

It is possible to exclude e, or h, from equations (4.24) and get the differential
equation £(h,) = 0 or L(e,) = 0, where L is a certain fourth-order linear oper-
ator [109] (see also [153]). The same equations hold for transverse components
of e and h. The scalar potential function 9 can be introduced [109], which also
satisfies the equation £(1) = 0; all e and h components can be obtained from
this function by differential operations. However, the fourth-order differential
equation for the function ¢ can be integrated analytically only in a limited number
of problems.?

The situation becomes simpler in the particular, but important, case when the
dependence of the i function on the coordinate z (in the direction of steady
magnetization) is harmonic. It means that ¢ = Z(2)¢ 1 (z,y), where Z(2) has
the form of exp(=ik.z), cos(k,z), sin(k,z) or is a linear combination of these
functions. This case includes also the absence of the dependenceon z,i.e., k; = 0.
If the = dependence is harmonic, so that 52/ 9z = —k?, then L is a product of
two second-order operators:

L= (V2 +&)(VL +K3). (4.26)

2For a detailed discussion of this subject see [153].
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The quantities nf,z are the roots of the quadratic equation
k* — pr? + g=20 (4.27)

where

€ BN 2
- k2— (=
p=(eyus +erp)ks (E o k;

q=eymeLpky + ” “ k3 — 2eym ( :z") kgk2.  (4.28)

Thus, in the case of harmonic z dependence there are two modes; the ¥ | function
for them satisfies the Helmholtz equation

Vi + k2,0, =0, (4.29)

The eigenvalues x; and k, determine the dependence of the fields on the trans-
verse coordinates. After these values and the functions v and 1, are found—by
solving (4.29) with corresponding boundary conditions—the e and h components
can be rather easily calculated. Such a technique of solving the boundary elec-
trodynamic problems for media with parameters (-+.23) in the case of harmonic z
dependence (or for fields independent on z) is considered in [153]; some examples
will be given in Chapter 5.

4.2 Uniform plane waves

We consider first of all the propagation of a uniform plane wave in an unbounded
medium with parameters (4.23). The wave is called uniform when the fields
depend only on one coordinate, in the direction of propagation. For a uniform
plane wave this coordinate is Cartesian, i.e., the wave front is a plane.

4.2.1 General relations

The complex amplitudes of the field vectors for a uniform plane wave can be
written in the form

e = epexp(—ikr) h = hoexp(—ikr) (4.30)

where ey and hy are constant complex vectors and k is the wave vector. Substi-
tuting (4.30) into (4.14) and (4.16) with Jex, = 0, we get

kxe—kyph=0 kxhtkpee=0 (4.31)

where ky = w/ec.
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Projecting (4.31) onto the coordinate axes and setting equal to zero the de-
terminant of the obtained system, we could find the dispersion relation, i.e., the
dependence of w on the length and direction of the wave vector k. This relation
can be found, however, in a simpler manner if we use the technique considered
in the preceding section. The quantities that appeared there now have the fol-
lowing sense: k = ksinf and k. = kcos #:, where 8, is the angle between k
and the direction of the steady magnetizatiom Mp. Substituting these quantities
into (4.27) and (4.28), we obtain directly the dispersion relation

k_z (Sinza;c + C0529k> (Sin29k + C0329k> _ k_z [(i& + Eﬁ) sin? 6y
ko \ e € i p ko L\ m

+2 (1 + i‘i—“) cos® Gk] +eipyp =0 (4.32)

where ¢ | and p; are determined by (4.25). Two roots of this equation correspond
to the two normal waves that propagate at the angle 6, to M.

1t should be noted that the roots of (4.32), in general, cannot be written in the
form

kK= k(%gef}ief (4.33)

where s would depend only on components of s and per would depend only on
components of ﬁ But (4.33) holds if either € or p is a scalar. In particular, for
scalar ¢, it follows from (4.32) that

k? = kdepes(O1)

2 2
BL _ in By o_ ind H 2
, 2+(u“ l)sm 6, + \ﬂu" 1)s1n 6 +4—&M cos26y;

sinZ O, cos? 0
2 (s 4 i)
If (4.33) is valid, it is easy to make sure that
1 1/2
k= ko (eelber + s — <lnts)”
" 1 rot o oy 1/2
k"= —\/—iko (lEEf”Nef‘ — EefMes T Eef“ef) (4-35)

where it has been assumed that e.s = ¢ — ielf, ptef = pig — ipter, and k = k' —ik".
Consider two limiting cases of a medium with scalar ¢. In the first case, of an
ideal dielectric, " = 0, ¢’ = €, and from (4.35), it follows that

1
k= ko (e + we)'”? (4.36)
! 1 1
K" = —ho/E (Ihetl - AKES (437)
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In the second case, of a well-conducting metal, we may assume, to the first
approximation, that ¢/ = 0 and, according to (4.18), €” = 4mo/w. Then, it
follows from (4.35) that

2no 172 _ 1
k' = koy/ o (lnest = pee) = 5, VHerL (4.38)

, [27wo a2 1
k' = ko _w_ (I,U/efl + .U'ef) / = E\/,ue“{. (4.39)

Here

1 w Ie

- koV 2ro ~ V2row

is the skin depth, i.e., the penetration length of an electromagnetic field into metal.
Note that if the magnetic losses are taken into account (el # 0), then k' # k.
If the value of " is finite but small (¢” < &'), we get, taking for simplicity

Hes = 0, that k' = ko /e'pl; and

Lo e _ 210 [ g
k' = 5’605, E—i = —c~ _ge!_' (441)

4.2.2 Longitudinal magnetization

)

(4.40)

In the case of so-called longitudinal magnetization, i.e., of wave propagation in
the direction of steady magnetization (6, = 0) the roots of (4.32) are

ki =kov(e te)(p :i:m. (4.42)

Upper and lower signs in (4.42) correspond to two waves. To find the field structure
for these waves we project equations (4.31) for §; = 0 onto the coordinate axes
and, according to the symmetry of the problem, pass to the circular components
(Section 1.3) of e and k. Then, we get

key iko(p £ po)hy =0
—khy xiko(e £e,)er =0 (4.43)
and e, = h, = 0. It is easy to make sure that upper and lower signs in (4.43)
correspond to the same signs in (4.42). It can be shown, in the same manner as in
Sections 1.3 and 3.2, that the transverse fields e and h have the right-hand circular
polarization for the plus signs in (4.42) and (4.43), and have the left-hand circular

polarization for the minus signs.
Substituting (4.42) into (4.43), we find

€4 . /‘i/-ta .
= = =" = . 4.44
I ?u/giea Fict (4.44)
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The quantity (+ can be called wave impedance of the medium for waves with
the right-hand and left-hand circular polarizations propagating in the direction of
steady magnetization. It is easy to make sure that for both waves

e ey

(= Ry~ he (4.45)
It is clear that all relations, obtained above for 8 = 0, are valid for 8, = m, too,
if the sense of polarization rotation (right-hand or left-hand) is determined in both
cases with respect to M. It follows from (4.42) and (4.44) that for 6, = 0, 7, ie.,
in the case of longitudinal magnetization, it is possible to introduce the effective
parameters eesy = € + €, and prert = p % fla.

The constancy of the field structure in the course of propagation is the definition
of a normal wave. The waves with right-hand and left-hand circular polarization
are the normal waves in the considered case of the longitudinal magnetization.
Any other wave can be represented as a sum of normal waves. The difference
between their propagation constants k. leads to the variation of the field structure
(polarization) of the total wave in the course of propagation.

Suppose, e.g., that at z = 0 there is a linearly polarized wave with the electric
field e(0) = epxo. It can be represented as a sum of the right-hand and the
left-hand circularly polarized waves:

e(0) = %g(mo — iyo) + 650(:160 + iyo). (4.46)

At z = [ the wave transforms into

e(l) = E9(:::0 — iyo) exp[—i(ky —ik})l] + %g(a:o + iyo) exp[—i(k_ — k" )]

2
(4.47)
It can be shown that (4.47) corresponds to an elliptically polarized wave and that
the major axis of the polarization ellipse makes the angle

9= % (K, — k)1 (4.48)

with the direction of the linear polarization at z = 0. The ellipticity of the wave
can be defined analogously to (1.101). At z = O the ellipticity £ = 1,andat z = {

£ = cosh™? (-;-lk’; - kﬁil) . (4.49)

If there are no losses (k] = k = 0), the polarization at z = [ remains linear
€ =1.

Formula (4.48) is valid for an arbitrary elliptical polarization of the wave at
z = 0, as well. In this case, ¥ is the angle of the turn of the major axis of
polarization ellipse on the way from z = 0to z = [.

The turn of polarization in a longitudinally magnetized medium is the Fara-
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day effect.> It follows from (4.48) and (4.42) that this effect is caused by the
antisymmetric components of ¢ and L. As the signs of these components are
determined by the direction of the steady magnetization My and are independent
of the direction of the wave propagation, the sign of the angle ¥ remains the same
when the wave propagates in opposite direction. This is an important feature of
the Faraday effect. For instance, the angle ¥ is doubled when a wave traverses the
distance [ in the forward and reverse directions.

Let us consider now in more detail the propagation of electromagnetic waves in
longitudinally magnetized weakly conducting ferromagnet, or ferrimagnet (fer-
rite). Two cases are of the most interest: one is realized at microwave frequencies,
another, in optics. In the first case,  can be regarded as a scalar independent of
frequency, and the expressions obtained in the previous chapters can be used for
i components. Suppose that the ferromagnet (or ferrimagnet) is isotropic and
is magnetized to saturation and, at first, do not take losses into account. Then
expression (1.58) for p & 1, can be used. Substituting it into (4.42), we get the
dispersion relation

2
(wH Fw) (kT—]) —upy =0 (4.50)
k§e

where wy and wyy are determined by (1.40) and (1.55), and the upper and lower
signs correspond to the waves with right-hand and left-hand rotation of the polar-
ization, respectively. The w vs k curves for these waves are plotted in Figure 4.1.
For the wave with left-hand rotation (it can be called ordinary), the w(k) de-
pendence differs but slightly from such that would take place if u was a scalar
independent of frequency. For the wave with right-hand rotation (extraordinary
wave) the w(k) dependence contains two branches. At one of them w infinitely
increases with growing k, approaching the straight line w = ¢/ek. At the second
branch, w tends to the constant value wy with growing k. The phase velocity
vph = w/k and the group velocity Vgr = Ow/Ok become very small at this branch
at large k values.

One can see from Figure 4.1 that (without allowing for losses) the wave with
right-hand rotation does not exist in the frequency rangewy < w < wy +wyy, in
which the effective permeability 41+ p,, is negative (Figure 1.6). If losses are taken
into account, the extraordinary wave does exist in this range, but the damping of
itis very strong (k" > k').

In the other case, which is realized at optical frequencies, w > wgy,wyy.
From (1.69) we get then to the first approximation, assuming o < 1,

!

WM "~
u =~

-2 et ey (4.51)
w w

1R

A

Now we may not regard ¢ as a scalar, e, can be even larger than i,. But we can
take e/, < ¢’ and €” < ¢’. Then, from (4.48) and (4.42) with regard for (4.51) it

3We use the term ‘turn of polarization® instead of the traditional term ‘rotation of the plane of
polarization’.
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FIGURE 4.1
Dispersion relations for electromagnetic waves in an unbounded nonconducting ferromag-
net magnetized to saturation (without allowing for losses).

follows that

9= -21—0 (—wM\/E + e;—w\/?) L. (4.52)
The first term in (4.52) is the ‘magnetic’ (i.e., determined by p,,) Faraday turn of
polarization; in the considered approximation it is independent of frequency. Its
value for usual ferrites (e’ ~ 15, My ~ 200G) is ~ 40deg cm™}. The second term
is the ‘electric’ Faraday turn; it usually depends strongly on frequency because &/,
changes rapidly with frequency near the absorption lines of the substance. It should
be noted that, in some papers on the propagation of optical waves in ferromagnets,
a statement can be found that all the observed effects can be described using only
s components, i.e., taking p = 1. It follows from the content of this chapter that
such a statement is absolutely groundless.

The problems of reflection from and passing through interfaces, normal to the
direction of propagation, are easily solved in the case of longitudinal magnetiza-
tion, as well as the problem of passage through a gyrotropic layer. Waves with
circular polarization pass through and reflect from the interfaces of different media
without change of the polarization, and the complex amplitudes of the reflected and
transmitted waves are easily found from the boundary conditions. The incident
wave with an arbitrary elliptical (e.g., a linear) polarization is resolved into two
waves with circular polarization. Their transmission and reflection are considered,
and then the complex amplitudes of transmitted and reflected waves with circular
polarization are summed to get the total transmitted and total reflected waves.
Two results of such calculations are to be mentioned. First, the magnetooptical
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Kerr effect, i.e., the turn of the major axis of the polarization ellipse of the wave
reflected from an interface of an isotropic and lossy gyrotropic media. The second
interesting result is the oscillating dependence of the angle of the polarization turn
on the thickness of the gyrotropic layer [140].

4.2.3 Transverse magnetization

In the case of 6 = 7/2, the solutions of the dispersion equation (4.32) are

k= ko,/l-?”p,l (4.53)
k2 = ko\/E1i) (4.54)

where €, and p are determined by (4.25). The system of six equations, the
projections of (4.31), splits now into two independent systems. One of them
is (z-axis is the direction of steady magnetization and y-axis is the direction of
propagation)

lcez - ]C()p,hm - iko[l,ahy =0
~iptahs + phy =0
koeje. — khy = 0. (4.55)

The second system is obtained from (4.55) by the substitutions e 2 A and
T —ﬁ. It is easy to show that (4.53) is the compatibility condition of the
system (4.55), and (4.54) is the compatibility condition of the second system.

So, for the first normal wave, the nonzero field components are e, h,, and h,,.
According to the second equation of (4.55), by, == O for this wave. Thus, the
vectors e and b are transverse (with respect to the direction of propagation),
linearly polarized, and perpendicular to each other. The vector h is elliptically
polarized in the plane perpendicular to M. For the second wave, with the
dispersion relation (4.54), the nonzero components are ki, e, and e,; the vectors
h and d are now transverse and linearly polarized.

The wave impedance can be defined, in the case of transverse magnetization,
as the ratio of transverse (with respect to the propagation direction) components
of e and h. It follows from (4.55) and (4.53) that the wave impedance of the first

normal wave is
€ HL
= — =, /—. 4.56
G P v/ - (4.56)

() u'“
=2 = /O 4.57
¢} n e, (4.57)

For the second normal wave,

It is clear from the expressions for k1,2 and (; » that the effective parameters for
the first wave are p; and €|, and for the second wave, wjande;.
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If a wave with field structure (polarization), different from the field structure of
a normal wave, propagates in a transversely magnetized medium, the polarization
of this wave changes in the course of propagation. It should be emphasized that
the transformation of polarization in this case has the same cause as the Cotton—
Mouton effect [246]. In contrast to the Faraday effect, it does not depend on the
direction of My because u, and £, appear in (4.53) and (4.54) only in second
powers. This transformation, also in contrast to Faraday effect, occurs in the
opposite direction when the propagation direction is reversed.

Consider now the particular case of a transversely magnetized ferrite in the
microwave range. In this case, ¢ can be regarded as a scalar independent of
frequency. If the ferrite is magnetized to saturation, then g = 1 and k) =
ko/Eu while ky = ko+/e. The second (ordinary) wave propagates now as in a
nonmagnetic dielectric. To obtain the dispersion law of the first (extraordinary)
wave we substitute (1.60) (without allowance for losses) into the expression for k;.
Then, we get

2

(Wl —w?) (—kz— - 1> -l =0. (4.58)
kie

The w(k) dependence that follows from (4.58) contains two branches (Figure 4.1).

One of them assymptotically approaches, with growing k, the dispersion curve

of the ordinary wave. The frequency in the second branch tends to the constant

value w .

One can see from Figure 4.1 that the extraordinary wave does not exist (if losses
are not taken into account) in the frequency range w; < w < wg + wus, in which
(Figure 1.6) the effective permeability 4, is negative. With allowance for losses,
the extraordinary wave exists but is strongly damped in this range.

At the lower limit of the forbidden frequency range 11 — 00, and at the upper
limit, ;. = 0. So, these limits are, respectively, the resonance and antiresonance
points of the effective permeability. We have come across an analogous situation in
the case of the longitudinal magnetization. The resonance points of the effective
permeabilities are different in the two cases, whereas the antiresonance points
coincide (Figure 1.6). It is easy to show, using (4.34), that the antiresonance
frequency waniires (defined by the condition per = 0) is

Wantires = WH + WM (4.59)

irrespective of the propagation direction.

If the losses are taken into account, the resonance point is defined as a point
where p!; is maximal, and the antiresonance point is defined as a point where
pihe = O and pil% is small. It is easy to make sure that k' = k" at the antiresonance
point, as well as near the resonance point (where yg; = 0). Near resonance
the value of k' = k" is large, approximately proportional to &~ '/2, whereas at
antiresonance it is small, proportional to a.

Expressions (4.50) and (4.58) can be regarded as dispersion equations for pairs
of coupled waves. The first waves in these pairs are magnetic or spin waves. To
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obtain their ‘uncoupled” dispersion relations we must set to zero the expressions
in the first parentheses in (4.50) and (4.58). Dispersion relations for the second
waves, which are the electromagnetic waves in a medium with ;2 = 1, are found by
setting equal to zero the expressions in the second parentheses in (4.50) and (4.58).
The last terms in these equations represent the coupling of the waves. It results in
the repulsion of the dispersion curves of spin waves and electromagnetic waves
(Figure 4.1). Such treatment, ‘in terms of coupled modes’, brings nothing new
in the considered problem of waves in an unbounded uniform medium. But for
more complicated problems it can be very useful.

4.3 Nonreciprocity

The presence of ¢ or H antisymmetric components, caused by steady magneti-
zation, results in some phenomena in systems containing such media, which are
referred to as nonreciprocal effects. This term is used because in such effects the
well-known reciprocical theorem (e.g., [191]) is violated. One of the nonrecip-
rocal effects is the turn of polarization of a linearly polarized wave (the Faraday
effect) in a longitudinally magnetized gyrotropic medium. This effect was con-
sidered in the preceding section for an unbounded medium. Analogous effects
are observed, as we will see in Chapter 5, in waveguides containing gyrotropic
media, as well. Other nonreciprocal effects, which are possible only in systems,
containing boundaries between different media, will be studied in Chapters S
and 6.

The aim of the present section is to consider some general relationships that
can be used in the analysis of nonreciprocal effects. The most important of these
relationships is the generalized Lorentz lemma.

The Lorentz lemma was proposed for media with symmetric tensor parameters
and was used in deriving the reciprocical theorem. We will generalize this lemma
to a system containing media with arbitrary tensors ¢ and 1. The system can
contain any boundaries, including metallic surfaces. Two ac electromagnetic fields
with the same frequency and complex amplitudes ey, h; and e,, h;, are excited
by the external currents, respectively, Jexi1 and Jex 2.

We write the Maxwell equation (4.14) for the fields with subscripts 1 and 2,
and equation (4.16) for the same fields, and scalarly multiply these equations,
respectively, by hy, (—hy), e, and (- el) Then, we sum all the obtained expres-
sions and represent the tensors 1 and £ as sums of symmetric and antisymmetric
tensors (Section 4.1). It is easy to make sure that

hitishy = hojughy hiliashs = —hyliash. (4.60)

Taking into account (4.60) and analogous relationships for the electric fields and



4.3 Nonreciprocity 105

R d Rnd
tensors € and € »5, we get

4—C7Fdiv(e1 x hy —ey x hi) + ’5“7% (hZﬁashl - eZEasel) = Jext1€2 — Jext2€1-
(4.61)
This expression represents the Lorentz lemma generalized to media with nonsym-
metric tensor parameters.

Integrating (4.61) over a volume V, we obtain, with the use of the Gauss theorem
(e.g., [273]),

—c—/ (e;1 X hy — ez X hy)nedS + E/ (hzzash| - ezgasel) dv
4r S 27 Vi

- / JexreadV — / jezerdV. (4.62)
Vi V2

Here S is the surface that encloses the volume V, ng is a unit outward normal
to S, V, is the part of the volume V' that contains gyrotropic media, and V; ; are
the parts of V' in which the currents jex1 and Jexi2 exist. The expression (4.62) is
the generalized Lorentz lemma in the integral form.

The volume V must be chosen according to the character of the problem. In
the antenna theory (e.g., [191]) the infinitely large volume V' includes both the
transmitting and the receiving antennae. Then, the surface integral in (4.62) tends
to zero; and, if H and ¢ of all media are symmetric tensors (in particular, scalars),
the reciprocity theorem follows from (4.62).

When waveguide devices are investigated, the volume V' is restricted (Sec-
tion 5.4) by the walls of waveguides (or of a waveguide junction) and the wave-
guide cross sections. The currents Jext1,2 are in this case, usually, outside the
volume V/, so that the right-hand side of (4.62) is equal to zero. And, if we assume
the metallic waveguide walls to be ideally conducting, the surface integral over
the walls is equal to zero, too. Then, it follows from (4.62) that

%Z/S (€p1><hp2—ep2xhp))’nopds
p=17"7

= il (h]ﬁashz - 61?3562) dV = J,. (4.63)
27 Vi

Here p is the number of an input or an output waveguide, S, is its cross section,
7, is a unit normal to this cross section, e, and h, are the fields at it. The
nonreciprocal microwave ferrite devices, for which J, # 0, will be treated in
Chapter 5. Here we limit ourselves to some general remarks. For a magnetically
gyrotropic medium, it follows from (4.21) that }Iashz = idrhy X G,. Taking this
into account, we get

Ja=2w | Gn(hi x hy)dV. (4.64)
1A




106 4 Fundamentals of electrodynamics of gyrotropic media

The antisymmetric components of X and z and. hence, the vector G, are pro-
portional to My. Therefore, the quantity J, changes its sign when the direction
of the steady magnetization is reversed.

The quantity J, can be equal to zero, besides the trivial case p, = 0, for
two reasons. The first reason is related to the structure of the fields h; and h,.
One can see from (4.64) that J, = 0 if the complex amplitudes h; and h, are
parallel to each other in the entire volume V,. This takes place when a small
ferrite sample is situated in the waveguide at a point of linear polarization of
the magnetic field. The second reason relates to the symmetry of the device: the
integrals in (4.64) over different parts of the volume V, can compensate each other.
A representative example is a ferrite slab located symmetrically in a rectangular
waveguide (Section 5.2). It should be emphasized that the entire system can be
reciprocal in the above-discussed sense (J, = 0), while the field structures are
nonreciprocal, i.e., different for opposite directions of propagation.

Thus, the existence of steady magnetization is not sufficient but necessary for
observing nonreciprocal effects (and designing nonreciprocal devices). This is in
agreement with the pr1nc1p1e of symmetry of the kinetic coefficients (the Onsager
principle) [246], which, for u components, can be written as

Hpg (w7 kv BO) = Hgp (wy -ky ‘—BO) (465)

where By = Hy + 47 M.

It should be noted that antisymmetric components of € (may be of }7, too)
can arise in some substances without any action of steady magnetization. These
components depend linearly on k and, so, are equal to zero if ¥ = 0. The
sense of the turn of polarization in such substances changes, as distinct from
the Faraday effect, to the opposite when the direction of propagation is reversed.
This phenomenon is called natural optical activity [246], as distinguished from
gyrotropy, which is discussed in detail in this book.

4.4 Energy relations

The energy relations are quadratic (in field amplitudes) expressions that follow
from Maxwell’s equations and represent the relationship between energy flows
and energy losses in an electromagnetic field. As we are interested in stationary
processes, when all the linear quantities are harmonic functions of time, we
consider in the present section, as in Section 4.3, the quadratic relations for the
complex amplitudes.
Suppose that there are two real quantities a.. = ag cos(wt + ©.) and b

bo cos(wt + ¢s), and the complex quantities & == agexp(iwt + ip,) and b =
bo exp(iwt + igs) are introduced, so that a.. and b.., are the real parts of & and b.
Then, it is easy to show that the average of the product a..b.. over the period of
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oscillations is

r 1 1
a~b. = / a~b.dt = —Re(ab*) = =Re(a™b) (4.66)
0 2 2

(the quantities a = ag exp(ip,) and b = by exp(ips) are the complex amplitudes
of a~ and b.). Expressions analogous to (4.66) hold for both scalar and vector
products of vector quantities.

4.4.1 Equation of energy balance

We multiply the Maxwell equation (4.14) scalarly by h* and the complex conjugate
of (4.16), by —e. Summing the obtained expressions, we get

c .. N iw e - .
4—7;d1v(exh)+27—;(h ph—ec e)-{-egex[:O. (4.67)

The real part of (4.67) can be written in the form

divIT + P + Peyy =0 (4.68)
where
I = S%Re (e x h*) (4.69)
w Fhad * T %
Pz—glm (h wh—e‘ce ) (4.70)
1 .
Py = ERC (e3i) - (4.71)

Taking into account the relationships, analogous to (4.66), for the vector and
scalar products, we make sure that IT is the time-averaged Poynting vector, i.e.,
the mean value of the density of the electromagnetic-energy flow, P is the mean
value of the density of the energy losses, and Pey, is the mean value of the density
of the power of losses due to external currents. Thus, (4.68) is the equation of
energy balance for the ac electromagnetic field (in differential form).

Using (4.18) and (4.13), it is possible to rewrite (4.68) as

divll+ P+ P. =0 (4.72)
where Py = —w/(87) Im(h* 11 h) is the density of magnetic losses, and
1 .
P = ERe(eJ*) (4.73)

is the density of total electric losses due to both ohmic and external currents.
Integrating (4.68) over a volume V, we find

/ InedS + / PAV + / PuudV =0 (4.74)
S |4 v
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where S is the surface that encloses the volume V' and ng is a unit outward normal
to S. Expression (4.74) is the energy balance equation in integral form, i.e., the
complex Pointing theorem for an ac electromagnetic field.

4.4.2 Energy losses

Letus cons:der in more detail the quantity (4.70). It is easy to show that Hermitian
tensors uH (Section 4.1) and ¢y do not contribute to P, and the contribution of
anti-Hermitian tensors can be written in the form

w Tk T %
P= glm (huaHh +e:ye ) . (4.75)

So the energy losses are determined by anti-Hermitian parts of the tensors 1 and
7, ie., by the imaginary parts of their symmetric components and the real parts
of the antisymmetric components. [That is why the factor i has been introduced
before the antisymmetric components in (4.20).]

Consider, e.g., a medium with permeability as in (4.23) but with scalar per-
mittivity. Such a medium represents, for microwave range, a ferromagnet or a
ferrimagnet (ferrite) which, in the absence of steady magnetization, is assumed to
be isotropic. For this medium

i wplo 0 . i” 0 0
=] —ul i 0 Ew=| 0 i"” 0 |. (4.76)
0 0 iuf 0 0 ig”

The complex amplitudes of the components of /v and e vectors with arbitrary
polarization can be written as h, = h;, + ih; and e, = e;, + ie}, where p =
1,2,3 = z,y, z. Then, as it is easy to make sure

P = ol [,u” (|h$|2 + |hy|2) + /"f||]h |2 +2/LH (h" h" K h") + 6llle|2:| .
8w
(4.77)
For media with tensor ¢ (e.g., for plasmas, both gaseous and solid-state, and
for ferromagnets or ferrimagnets in optical range) the power of electrical losses
should be written analogous to magnetic losses in (4.77).

One can see from (4.77) that the dissipation (positive losses) of electromagnetic
energy is determined by positive values of u”, ,u“ and €, if the signs are chosen
as in (4.19). Such a conclusion cannot be made concerning ! (as well as €)),
because the quantity hyh; — hi/h;, in (4.77) and analogous quantity for electric
field components can have different signs depending on the polarization of the
fields. These quantities are positive for circularly or elliptically polarized fields
with right-hand rotation (with respect to the direction of steady magnetization),
and are negative in the case of left-hand rotation. For linearly polarized fields these
quantities are equal to zero. Thus, the same values of ;1) and ¢!/ make positive,
negative, or zero contribution to dissipation of electromagnetic energy, depending
on the polarization of the field.
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For a passive medium (without any intrinsic energy sources), it should be
P > 0 for any polarization. This leads to the following limitations on the values
of anti-Hermitian parts of ;1 components:

1"

W'>0  pu >0 |pg <p” (4.78)

and to analogous limitations on the values of the components of % . The signs of
" and €’ can be arbitrary, and just as the signs of y and ¢, they depended on
the direction of the steady magnetization.

4.5 Perturbation method

The difficulties we meet with in solving boundary electrodynamical problems
are especially great in the case of gyrotropic media. Therefore, in this case the
approximate methods are of particular importance. The simplest and most general
of them is the perturbation method. The unperturbed system is, usually, a system
containing no gyrotropic media, and the perturbation is either a small change of
parameters in an arbitrary large volume or a substantial change of parameters but
in a small volume. The second case is more interesting from the practical point of
view.

The perturbation method is effective in calculating the quantities that are func-
tionals of the electromagnetic field, such as eigenfrequencies of resonators or prop-
agation constants of waveguides. The perturbation formulae for these quantities
can be deduced from general quadratic relations, which can be called perturbation
lemmas.

To derive these lemmas consider two systems: an unperturbed (mmal) w1th
scalar parameters g and ¢o, and a perturbed, with tensor parameters 7 and €.
An electromagnetic field with frequency wp and complex amplitudes of the field
vectors hg and eg exists in the initial system, and a field with frequency w and
complex amplitudes h and e exists in the perturbed system There are no external
currents in both systems. We write equations (4.14) and (4.16) for the perturbed
system and the complex conjugates of these equations, for the initial system.
Then we multiply these equations by the appropriate vectors, as in the derivation
of (4.61) or (4.67). Summing all the obtained expressions, we find (assuming o
and ¢g to be real) the perturbation lemma

div (e x hy + ey X h) (whouh wohuohg + weg Te — wpeepe ) = 0.

¢ (4.79)

In the same manner, but starting from equations (4.14) and (4.16) for both sys-

tems (not from the complex conjugate of (4.16) for the initial one), we can obtain
a lemma that differs from (4.79) by the replacement hy — ho and e; — —eo.
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(a)

FIGURE 4.2
Gyrotropic perturbations (a) of a waveguide and (b) of a resonator.

4.5.1 Gyrotropic perturbation of a waveguide

Consider an infinite waveguide with cross section Sy filled, in the unperturbed state,
with a medium the parameters of which are 9 and 5. A wave with complex
amplitudes ey = e exp(—ikyon) and kg = h{exp(—ik,on) propagates in this
waveguide (n7-axis is directed alon g the axis of the waveguide). The eigenfunctions
of the unperturbed waveguide €3 and h{ and the propagation constant kno are
assumed to be known The perturbatlon is an infinite cylinder with cross section
S and parameters ,u and ¢ inserted in the waveguide (Figure 4. 2) The complex
amplitudes of the field in the perturbed waveguide are e = €° exp(—ik,n) and
h = h® exp(—ik,n). The propagation constant k,, is to be found.

Substituting the quantities eq, ho, e, and h into the lemma (4.79) (where, in
the present case, w = wyp), integrating it over the waveguide cross section Sp, and
taking into account the boundary conditions at the waveguide walls, we obtain,
according to Nikolskii [299],

w Js (RE6ERO+ e§sEe%) dS

kp —kpg = — .
N T (& X AT + el X B) medS

(4.80)

Here the subscript L denotes the transverse (with respect to the wavegmde axis)
components of the eigenfunctions of the waveguide, § & = 1 — po, 6 = € —eq,
and 7, is a unit vector directed along the waveguide axis.

Formula (4.80), as well as the lemma (4.79), is rigorous, but the eigenfunctions
€° and h? are unknown. If the surface S1 is small as compared with Sy, then, in
the denominator of (4.80), we can approx1mately replace the unknown functions
€® and hO by the known functions ] and h. Taking into consideration the
formula of the waveguide theory (e.g., [151]) ho = (9 x €3,)/¢o (where (o is
the characteristic impedance of the unperturbed waveguide), we get

ky ~ ko = o / (h3*5}1h° + eg*a‘ge") ds (4.81)
2CNO Si
where Ny = |, S |3, |dS is the normalization constant of the unperturbed-

waveguide eigenfunctions.
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4.5.2 Gyrotropic perturbation of a resonator

Let us derive a formula for the eigenfrequency of a hollow electromagnetic res-
onator with a small gyrotropic sample (Figure 4.2). The field (eo, ho) in (4.79)
represents now the field of one of the modes of the unperturbed resonator, and (e,
h) is the field of ‘the same’ mode of the resonator with the sample. (‘The same’
means that this mode transforms into the mode of an unperturbed resonator when
the sample volume V; — 0.) Integrating (4.79) over the resonator volume ¥ and
taking into account the boundary conditions at the resonator walls (regarded as
ideally conducting), we find [298]

w—w v (he6ER+eoEe)av

w Iy, (huoh + ejece) dV

(4.82)

If Vi <« Vj, we may, as in the previous case, replace the perturbed fields in the
denominator by the unperturbed fields. Then we get

w — w() ~ _ 1 * et *x < .
s /v. (hoé,uh + eoase) av (4.83)
where
Wo = / eo|e0|2dV = j,t()lh0|2dv (4.84)
Vo Vo

is the energy of the electromagnetic field in the unperturbed resonator multiplied
by 8.

In (4.81) and (4.83), the quantities of the type hg 8 ph take place. We write
them down in the particular case of a medium with parameters (4.23). For instance,

hi8uh = 6uhd hy +ipazo (h§, x hi) + dpyhg,h: (4.85)

where 6p = g — po, Spy = gy — Ho, the z-axis is directed along the steady
magnetization My, and the subscripts L denote now the components perpendicular
to this axis.

If we allow for dissipation, i.e., take into account the anti-Hermitian parts of €
and ﬂ, the right-hand sides of (4.81) and (4.83) become complex. These formulae
then give the changes of both the real parts and the imaginary parts of &, or w.
Therefore, they can be used to calculate the decrement of a wave in a ferrite-loaded
waveguide and the quality factor of a resonator with a ferrite sample, which is
related to the imaginary part of the eigenfrequency by the expression (1.107).

4.5.3 Quasistatic approximation

The perturbed fields in (4.81) and (4.83) differ essentially from the unperturbed
fields, no matter how small the sample may be, and are to be approximated in some
way or other. The simplest is the quasistatic approximation, which consists in
the following: the relation between the perturbed (internal) ac field in the sample
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and the unperturbed ac field is assumed to be the same as the relation between the
static internal and external fields. (The external field is the field at the point of a
waveguide or a resonator where the sample is, but without the sample.)

This is just the approximation used in Section 1.5. The magnetostatic problem of
the relation between the internal and the external fields has a simple solution (1.85)
if the sample is a small ellipsoid in a nonmagnetic medium (1o = 1). Having
excluded the internal field h from (1.85) and the expression

h+4rm = ph (4.86)

we obtained, in Section 1.5, the relation between the magnetization m and the
external field h. (now designated as hg). To find the relation between h and hy,
which we are interested in at the present, we exclude 7 from (1.85) and (4.86)
and obtain (for py = 1)

-1
h=<LwLNﬁ> ho = Thy (4.87)
4r

where the superscrlpt —1 denotes the inverse tensor. If yg # 1, the quantity 6u is
replaced by 61 / o
Assume that u has the form (4.23), yo = 1. and M is directed along one

of the ellipsoid axes. The tensor 7' components. i.e., the relations between the
components of k and hy, found on these assumptions, are listed in Table 4.1 for the
limiting cases of an ellipsoid. Analogous relations hold between the components
of e and eg.

A necessary condition for the applicability of the quasistatic approximation is
that at least one of the sample dimensions (d) must be small as compared with
the length of electromagnetic wave in the sample. If we take into account that the
transverse diagonal components ¢ and ¢ are of the same order of magnitude as
other components, respectively, of z and £, then we may write this condition as

—VMkd<— (4.93)

Here d is the diameter of a sphere, the diameter of a cylinder, or the thickness of
a slab. It must be emphasized that other dimensions of a cylinder or a slab should
not be small. Then, the internal field will vary in the plane of the slab or along the
length of the cylinder, but in the same way as the external field.

If all dimensions of the sample are small, the integration in (4.83) can be
replaced by multiplication by V. The integration in (4.81) can be replaced by
multiplication by S if all dimensions of the cylinder cross section are small.

The second necessary condition for the applicability of the quasistatical ap-
proximation (in the considered form), already mentioned in Section 1.5, is that
the oscillation mode must be uniform.

The above obtained perturbatlon formulae comam the tensor parameters of the
substance i = 1 + 47rx and ¢ = 1+ 4ry Xel (Where Xe] is the ac electric



113

4.5 Perturbation method

(z6't)

(16%)

(06'v)

(68%)

(88'%)

o - (g +1) o= (T+1) - g+ 1) =g+ 1)
EN ¢+ lrf fgy L 4 ENRYTRA 4 A z 4 _ zoy L 4
e T g + rlig . >1Tig %y T+ Me ©)] aroydg
z + __1 £ £ + i _ oz _ + il
oy rlm 0y ocuﬂ_l 0y z (p)  os1Asuer],
JopurA)
=1+ -1+ o= (1+7) o = (1 +1)
20y  fioy L 4 2oy L z Aoy L 4 _myi___ T
0y foy 0+ 7z + =0y g 0y Sz oy Tz (0) reurpmiSuo]
20 lrd AQ z(
4T Y Y @ TEULION
qels
0y foyfl 4 =0yl =0y (®  renuesuel
Yy iy =y (31 uonezn  o[dures
a3y ur -augew Jo
UoNRION uonoIIq

‘uonewrxosdde oneysisenb oy ut spfey paganuadun pue paqinuad Jo sjusuodwiod usamiaq SUOTIE[IY

't A1dVL




114 4 Fundamentals of electrodynamics of gyrotropic media

susceptibility). But, if the sample is a small ellipsoid or, in limiting cases, a thin
slab or a thin cylinder, the external susceptibility tensors X ¢ and ‘;2; (Section 1.5),
which relate the ac magnetization m and ac polarization to the external ac fields,
can be inserted into the perturbation formulae. Consider, e.g., formula (4.83) and
assume po = 1 and 9 = 1. The expression hj é 7ih in (4.83) can be rewritten as
follows:

hi6ph = hi4rXh = 4rh} X he. (4.94)

The expression ej 6€e, as well as the analogous expressions in (4.81) can be
transformed in the same way. Thus, the introduction of external susceptibili-
ties allows one to exclude the internal (perturbed) fields from the perturbation
formulae, and there is no need in approximating them.

If the substance (ferromagnet or ferrite) is isotropic, in the absence of steady
magnetization, and the sample (an ellipsoid) is magnetized along one of its axes,
the tensor }—fe is given by (1.112) with x; = 0. Then, the expression ho}—eeho,
which appears in (4.83), takes the form

hg X ho = X&|hg.|* + x5 lhoy|* + ix5 20 (R X ko) - (4.95)

It is easy to make sure that the last term in (4.95) is equal to zero for a linear
polarization of hy, and is real and has different signs, for circular polarization of
hy with different senses of rotation.

4.5.4 Resonator with walls of real metal

The perturbation method can be used, as well, to calculate approximately the
parameters of electromagnetic resonators or waveguides with walls made of non-
ideal, in particular, ferromagnetic metal. Consider, e.g., a resonator, a part S} of
the surface of which is a boundary with metal having high but finite conductivity.
The rest of the resonator surface is a boundary with ideally conducting metal.
There are no gyrotropic samples inside the resonator.

We integrate (4.79) over the volume of this resonator and take into account that
the tangential component of the electric field is not equal to zero on S;. Then,
neglecting the distinction between the perturbed (w) and unperturbed (wp) values
of frequency, except in the difference (w — wyp), we get the perturbation formula
obtained by Slater [367]:

w—wy _ w-wy .1 ic N
o wm +iz 0 = 2V / ‘! (e x h*) nodS. (4.96)
Here W} is determined by (4.84), ng is a unit outward normal to S;, and e and h
are the perturbed field vectors. It should be noted that the real part of the integral
in (4.96) is the energy flow through S; multiplied by 8~ /c; this is in agreement
with the definition (1.108) of the quality factor Q.

According to the perturbation method, it is possible to substitute hgo for h

in (4.96). The unperturbed field hg is now the ficld in the resonator with ideally
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conducting walls, which is tangential to S;. The relation of the tangential electric-
field component e, to hg can be found from the analysis of the wave propagation
within the wall in the direction from the surface of the resonator. Note that such
calculation in the case of nonferromagnetic well-conducting metal leads to the
Leontovich boundary condition (e.g., [191])

er 1+i

ho 2
where 6 is the skin depth (4.40) in metal with ;2 = 1. The case of ferromagnetic
metal will be considered in Section 14.2.

kob (4.97)
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Waveguides and resonators with gyrotropic
media. Microwave ferrite devices

5.1 Waveguide with longitudinally magnetized medium

In this chapter we will study electromagnetic waves in waveguides and oscillations
in resonators containing gyrotropic media, in particular, the magnetized ferrites.
We will limit ourselves to the media with parameters (4.23) and often will regard
¢ as a scalar. The first two sections of this chapter will be devoted to the so-called
regular waveguides (infinitely long and with constant cross section) completely
or partly filled with a gyrotropic medium.

The case of a medium magnetized in the direction of the waveguide axis (a
longitudinally magnetized medium) will be treated first. In this case, the longi-
tudinal field components satisfy the equations that are obtained from (4.24) by
the replacement 8/0z — —ik,. It follows from these equations (as mentioned in
Section 4.1) that, if h, = 0, then e, = 0, too, and vice versa. Thus, the modes
of the waveguide filled with a longitudinally magnetized gyrotropic medium are
not TE or TM waves. However, they turn into TE or TM waves when p, — 0
and e, — 0. Therefore, they can be referred to as quasi-TE and quasi-TM waves.
Furthermore, they turn into TE or TM modes when k, — 0. Equations (4.24)
coincide then with the equations for an isotropic medium with parameters ¢
and p) (for TM waves) or with parameters £ and y (for TE waves). In can be
shown (e.g., [153]) that for magnetically-gyrotropic media ( &, = 0), in particular,
for ferrites at microwaves, the boundary conditions at k. = 0 coincide, as well,
with the boundary conditions for an isotropic medium. Therefore, the following
expressions for the critical wavelengths, analogous with such expressions for an
isotropic medium, are valid:

Aert™ = (Acr™™)o VELL AerTE = (Aer TEDo VEH (5.1)

where (Acrtm)o and (A¢rTE o are the critical wavelengths in an empty waveguide.
To find the propagation constant k. and the field structure in a waveguide with
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FIGURE 5.1
Circular waveguides with longitudinally magnetized ferrite.

a longitudinally magnetized gyrotropic medium the method of scalar potential
functions mentioned in Section 4.1 can be used. This method is described in
considerable detail in [153]. Here we will limit ourselves to some remarks. As the
z dependence is harmonic for a wave propagating—as in our case—in z direction,
the functions 9 1 ; satisfy equation (4.29), and the quantities ;> are the roots
of (4.27). The boundary conditions at the waveguide walls can be satisfied only by
some linear combinations of two fields that correspond to the functions 9 ; and
%1 2. These combinations are the normal modes of the waveguide. However, this
problem can be solved analytically only in a limited number of cases. A circular
waveguide filled with a longitudinally magnetized medium belongs to them.

5.1.1 Circular waveguide

Consider first a circular waveguide [Figure 5.1(a)] with perfectly conducting walls
completely filled with the medium for which 1 has the form (4.23) and  is a scalar.
A particular solution of (4.29) in cylindrical coordinates (Figure 5.1) that remains
finite at p = O has the form [293]

P = In(rp)exp(imyp) (5.2)

where J,, is the Bessel function and m = 0,+1. +2,.... The scalar function 1)
that corresponds to a normal wave can be written as

P = [A,Jm(mp) + Azlm(nzp)] exp(imy — ik, 2). (5.3)

Substituting (5.3) into the boundary conditions for the function 1 [151] at
P = po, we obtain a system of two uniform linear equations for A; and A,.
Setting equal to zero the determinant of this system, we get the transcendental
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equation
h-F=0

([ kfenr — K2 Ju(k1200) | pam k2
Fio=——"—"=-k, + >
K1,2 IJm(K1200) o K12

(5.4)

»

where J'(kpo) is the derivative of J (kpo) with respect to the argument. This
equation was derived independently by Kales [203], Gintsburg [139], and Suhl
and Walker [397]. Solving it together with the expressions for the roots K12
of (4.27), we can find k1, k3, and the propagation constant k.

It is very important that &, occurs in (5.4), as well as in (4.27), only to the
second power. Therefore, the value of |k,| is independent of the direction of
propagation. At the same time, 1, and m occur in (5.4) to the first powers, as a
product 1, m. The sign of u, is determined by the direction of My, and the sign
of m represents the direction of the polarization rotation (right-hand for m < 0
and left-hand for m > 0) with respect to the direction of propagation. Therefore,
the sign of 1, m shows the direction of the polarization rotation with respect to the
direction of the steady magnetization. The waves with right-hand and left-hand
rotation with respect to this direction have different propagation constants |k, |
and |k,_|. This distinction, in analogy with the unbounded medium (Section 4.2),
leads to the turn of polarization, i.e., to the Faraday effect.

The analysis of equation (5.4) was carried out in detail in [397]. It was shown,
in particular, that formula (4.48) is to be replaced now by

1
We can define a vector which lies in the cross section of the waveguide and is
rigidly bound to the field structure. This vector can be referred to as a vector
of polarization of the wave. It plays, in the case of a waveguide, the role of the
field-polarization vector (Section 4.2), the turn of which is the Faraday effect.

5.1.2 Circular waveguide with ferrite rod

The circular (as well as any other) waveguide completely filled with gyrotropic
medium (ferrite) is disadvantageous from the practical point of view. First, it
has a low ‘quality factor’ (i.e., the ratio of the angle 9 to the losses). Second,
strong reflections at the boundary of this waveguide and the empty waveguide
make matching difficult. These shortcomings can be diminished if the waveguide
is partly filled with ferrite, e.g., if the circular waveguide contains a circular ferrite
rod [Figure 5.1(a)].

This problem can also be solved strictly. The field in the ferrite rod v <p)
must be represented by a sum of two fields corresponding to x; and x,. The field
in the isotropic medium (p; < p < po) with parameters o = 1 and ¢ is a sum
of TE and TM fields. Each of them should contain Bessel functions Jm(Kop) as
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well as Bessel functions of the second kind (or Neumann functions) N (k0p)
[293] because the point p = 0 (at which N,,, -+ oo) does not belong now to
the considered region. Thus, six arbitrary constants appear in the expressions for
field components. The boundary conditions at p = po and p = p; yield a system
of six equations. Setting equal to zero the determinant of this system, we get a
transcendental equation for the quantities k., K1, /2, and Ko, which is to be solved
together with the expressions for the roots «; and x2 of (4.27) and the expression
k2 = k2eo—k?. Omitting cumbersome calculations [285], we note that only k2 and
the product p,m occur in the mentioned equation as well as in (5.4). Therefore,
the properties of the circular waveguide with a longitudinally magnetized ferrite
rod are, qualitatively, the same as those of the circular waveguide filled with ferrite.
In particular, formula (5.5) is valid now, too.

If p1/po < 1, formula (4.81) with the quasistatic approximation of the perturbed
field (Table 4.1) can be used to calculate k.1 and the angle ¥ for the circular
waveguide with ferrite rod. Such calculation [153], in the most interesting case of
the quasi-TE;; wave, yields

2
P1 Ha

9 =42k <po) (B+1)2 - 2! 36)
where kg is the propagation constant in an empty waveguide. To estimate the
limit of validity of this expression we use formula (4.93) and get, for o = 10,
pi/po S 0.05.

Another variant of the perturbation method (Section 4.5), the weakly-gyrotropic
approximation, can also be used [285]. Now the waveguide with the same £ and
p but with p, = O is regarded as the unperturbed system, and the appearance
of the antisymmetric component y, is the perturbation; the ratio po/p is a small
parameter. The results of calculations of the angle 9 by all mentioned methods
are shown in Figure 5.2.

The turn of polarization (the Faraday effect) in a circular waveguide can be
regarded alternatively as a result of energy transfer from a linearly polarized, e.g.,
quasi-TE;;, wave to another wave, also linearly polarized quasi-TEj; but with
the polarization vector (or the field pattern) turned through the angle of 7 /2 with
respect to the polarization of the first wave. These waves are the normal waves of
an empty waveguide, but they become coupled in a waveguide with longitudinally
magnetized gyrotropic medium. Such treatment can be applied, as well, in the
case of waveguide with a square cross section. The longitudinally magnetized
gyrotropic medium leads to the coupling of the waves quasi-TE;q and quasi-TEq;
in this waveguide.

The treatment in terms of coupled waves is especially useful if the distinction
between the waves in the waveguide with a gyrotropic medium and the corre-
sponding waves in the waveguide with an isotropic medium is small. This takes
place when the radius of the ferrite rod is small, or the values of ¢, and p, are
small.

The latter case is realized in optics. Consider, for instance, a plane optical
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FIGURE 5.2

Turn of polarization in a circular waveguide with ferrite rod [285]. ¥ is the angle of the
turn on a distance {, and ko is the wave number in free space. Solid curves correspond
to the rigorous calculation, dashed curves, to the calculation in the weakly-gyrotropic
approximation, and the dotted curve, to the calculation using (5.6). u = 1, po = 0.5,
]C() = 0.67[’ / Po.

waveguide (e.g., [7]), which consists of three dielectric layers with permittivities
€1, €2, and &3, the permittivity of the middle layer ¢, being the greatest. (In fact,
this waveguide is a thin film with €, on a substrate with €; < ¢, a third ‘layer’ is
air.) In the absence of gyrotropic media the normal waves in such waveguide are
TE and TM waves. But if one of the layers is gyrotropic, these waves are coupled.
If one of them is excited at the input, its energy is transferred into another wave
during the propagation. Of course, this process can be considered, as well, in
terms of normal waves of gyrotropic waveguide, which are neither TE nor TM.
They are not transformed into one another but have different k, values, and this
results in the transformation of the structure of the propagating wave, which is the
sum of these normal waves.

5.1.3 Faraday ferrite devices

The direction of the turn of the wave polarization in a waveguide with a longitudi-
nally magnetized gyrotropic medium does not depend, as previously mentioned,
on the direction of propagation, and it is reversed when the direction of the steady
magnetization is changed. This effect, which is a manifestation of the nonrecipros-
ity of such systems (Section 4.3), is used in designing nonreciprocal microwave
and optical ferrite devices. The devices of such type (referred to as polarization
or Faraday devices) were investigated by Hogan [183] (see also [247]).

Let us consider the device shown schematically in Figure 5.3. It is a section
of a circular waveguide with a longitudinally magnetized ferrite cylinder on its
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_H:&. 4

FIGURE 5.3
Faraday circulator.

axis and with two pairs of input and output rectangular waveguides. The linear
polarization of the wave TE;; is turned by the ferrite sample through the angle
¥ = w/4. The angle between the pairs of rectangular waveguides has the same
value. It is easy to see that the wave coming, e.g., from port 1 (Figure 5.3) passes
into port 2, and the wave from port 3 passes into port 4. As the sign of the angle
9 is independent of the direction of propagation, the wave from port 2 will pass
into port 3, and the wave from port 4 will pass into port 1. A device with such
properties is called a circulator (in the considered case, a four-port circulator). If
the external steady field H.¢ is turned to the opposite direction, the direction of
energy circulation is reversed.

When matched loads are connected to ports 3 and 4, the circulator becomes
an isolator, i.e., a device that isolates a generator (connected to port 1) from
a load, e.g., from an antenna (connected to port 2). If a transmitter and an
antenna are connected, as before, to ports 1 and 2, respectively, and a receiver is
connected to port 3, the device works as a duplexer [247]. A Faraday circulator
and, hence, an isolator or a duplexer have usually, in a frequency band of ~ 10%,
the following parameters: forward losses less than 0.5 dB and backward losses
25-30dB. Changing, continuously or discretely, the magnetic field H, ¢, we obtain
an amplitude modulator or a switch. The frequencies of modulation as high as
~ 10 MHz can be reached with comparatively low magnetic-field amplitudes.
All the above-mentioned Faraday devices can be constructed using the waveguide
with square cross section, as well.

A circular or a square waveguide with a longitudinally magnetized ferrite sample
can also be applied in a controllable phase shifter or phase modulator. In this case,
the circularly polarized wave is to be used with k., depending on magnetic field.
It is worth noting, however, that a linearly polarized wave in a waveguide in which
only this wave propagates can be used, as well, to design a controllable phase
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shifter. As an example, the reciprocal Reggia—Spencer phase shifter [326] (see
also [247]) may be mentioned.

5.2 Waveguide with transversely magnetized ferrite

In this section we will study the propagation of waves in waveguides that contain
gyrotropic media magnetized at right angle to the waveguide axis. First of all, the
rectangular waveguide completely filled with such a medium will be treated.

5.2.1 Rectangular waveguide filled with ferrite

Consider a rectangular waveguide (Figure 5.4) filled with the medium with pa-
rameters (4.23). The direction of magnetization, which coincides, as usual, with
the z-axis, is normal to the wide waveguide walls. The simplest modes in this
waveguide are such for which the fields do not depend on z. Let us first ig-
nore the boundary conditions. Then, as it follows from (4.24), TE waves (with
h. = 0) and TM waves (with e, = 0) can exist if 3/3z = 0. Substituting
e = epexp(—ikyy) and h = hg exp(—iky,y) into equations (4.14) and (4.16) and
projecting these equations onto the coordinate axes, we obtain two independent
systems: the following one!

kye, — kophg — ikopahy =0
de, .
i ikopahs + kophy =0

oz
k()E“ez - kyhx + i% =0 (5.7)
and a system for the components e, ey, and h,. The system (5.7) represents the
waves TE o, and the second one represents the waves TM,,o (the subscripts n and
0 indicate the numbers of variations of the field-component amplitudes along the
axes, respectively, z and z).

However, the waves TM,,o do not exist in this waveguide because they do not
satisfy the boundary conditions. Indeed, the components e and e, should be
equal to zero at the walls z = 0 and z = b and, hence, everywhere because
8/0z =0.

For TE,o waves, excluding h, and z, from (5.7), we find

dZe

_dxzz +K2e, =0 (5-8)

!In (5.7) and later on we omit the subscripts O at the components of € and h.
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FIGURE 5.4
Rectangular waveguides with transversely magnetized ferrite.

where
K2 = kjeuL — k;. (5.9)
The solution of (5.8), which satisfies the boundary conditions at z = O and z = a,
has the form
e, = Asink,x Km:’l’_;ﬁ n=1273,.... (5.10)
From (5.9) and (5.10) we obtain the propagation constant

2
k‘y:\/kgE”[LJ_—(Ei) . (5.11)

[

Thus, the structure of the electric field of the waves TE,,¢ in a rectangular wave-
guide filled with transversely magnetized ferrite is the same as in the waveguide
filled with an isotropic medium. It is easy to make sure that the structure of the
ac magnetic induction is also the same as in the case of an isotropic medium.
However, the structure of the ac magnetic field is quite different (Figure 5.5) and
nonreciprocal. It changes with the reversal of the direction of propagation or
the direction of magnetization and remains the same if both these directions are
reversed.

The field structure in a rectangular waveguide filled with transversely magne-
tized medium is much more complicated if we allow for the field dependence on
both transverse coordinates z and 2. Normal waves are, then, the superpositions
of partial waves with two values of k.. They are¢ no more waves TE or TM but
have six field components [356, 285]. It follows from (5.11) that, if u; < 0, only
such modes can propagate. The z dependences of the fields are represented, then,
either by hyperbolic (with imaginary «,) or by trigonometric functions. In the
first case, the fields ‘press themselves’ to one of the narrow (perpendicular to the
z-axis) walls of the waveguide, depending on the direction of propagation. Such
modes are referred to as ferrite-metal modes.
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Magnetic force lines of a TEy wave in a rectangular waveguide filled with ferrite for two
directions of propagation. € = 9, p = 0.9, pa = 0.6, ko = 1.417/a.

5.2.2 Rectangular waveguide with ferrite plates

Let us turn now to waveguides partly filled with transversely magnetized gyrotropic
medium. The simplest case is a rectangular waveguide with a ferrite plate parallel
to the narrow waveguide walls (Figure 5.4). We limit ourselves again to the modes
with d/9z = 0. Equation (5.8) is valid inside the plate; outside the plate

de?
@4’&2082 =0 (5.12)
Kio=kg — ki (5.13)

The solutions of (5.8) and (5.12) that satisfy the boundary conditions at z = 0
and x = a are

e, = Asinkg oz O<z<yg
e, = Bsink (xz — g) + Ccosk.(z — g) g<z<g+d
e. = Dsinkgola — x) g+d<z<a (514)

Four conditions of continuity of e, and hy at z = g and x = g + d yield a
system of equations for the coefficients A, B, C, and D. Setting equal to zero the
determinant of this system, we obtain the equation derived first by Kales, Chait
and Sakiotis [204]:

P Kz ocot ked (tan k409 + tan kzol) — (p* + ¢°) tan £, 0g tan Ky ol
+ni0 + Kgoq(tankzog — tank, o) =0 (5.15)

where p = k. /11, ¢ = poky/(pp1) andl =a — g —d.
Equation (5.15) contains the product 1, k,,. Therefore, the roots of this equation,
|k} | and |k, |, as well as the field patterns, are different for opposite directions
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FIGURE 5.6

Dependence of nonreciprocal difference of propagation constants in a rectangular waveg-
uide with ferrite plate on the location and thickness of the plate [Figure 5.4(b)]. Solid
curves represent the results of rigorous calculation [158], dashed curves correspond to
the calculation by the perturbation method (Section 4.5). € = 9, u = 0.9, o = 0.5,
ko = 1.447 /a.

of propagation or opposite directions of magnetization; they remain the same if
both of these directions are reversed. The replacement g 2 [ results in the same
change of |ky|. If g = I, then |k| = |k;|. An equation for critical frequency
(or for critical waveguide dimensions at constant frequency) is obtained by taking
ky, = 0in (5.15). Then, i, will appear in this equation only to the second power.
So, the critical values of frequency or of waveguide dimensions are independent
of the directions of magnetization and propagation.

The dependence of the nonreciprocal difference 6k, = [k}| — |k, | on the
thickness and location of the ferrite plate obtained by numerical solution of equa-
tion (5.15) [158] is shown in Figure (5.6). The results of calculation by the
perturbation method with quasistatic approximation of the internal field (Sec-
tion 4.5) are also plotted. One can see that the perturbation method may be used
only for d < 0.02a.

The field structures in a waveguide with a transversely magnetized plate are
quite different, as it follows from (5.13), for |k,| < ko and |ky| > ko. In the first
case the x dependence outside the plate is represented by trigonometric functions,
while in the second case it is represented by hyperbolic functions. The field
structure inside the plate, according to (5.9), depends on the value of p,. If
pn1 <0, ie., the frequency lies in the range w; < w < wy + wys (Figure 1.6),
the = dependence of the fields in the ferrite plate is represented by hyperbolic
functions. In unbounded transversely magnetized ferrite, the wave propagation
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FIGURE 5.7

Electric-field patterns in waveguides with magnetized ferrite plates (8/0z = 0). Solid
and dashed lines correspond to opposite directions of propagation. (a) x; < 0 and (b,c)
py >0,

in this case would be impossible. In a waveguide containing a ferrite plate with
#1 < O the wave does propagate, but its field is ‘pushed out’ of the regions
where the polarization of magnetic field is near right-hand circular. For opposite
directions of propagation—as well as for opposite directions of magnetization—
the fields ‘press themselves’ to the opposite surfaces of the plate (Figure 5.7). This
is a manifestation of the nonreciprocal field-displacement effect.

The transcendental equations analogous to (5.15) can be obtained, in the case
of 8/0z = 0, for rectangular waveguides with an arbitrary number of transversely
magnetized ferrite plates parallel to the narrow waveguide walls. The most in-
teresting is the case of two plates located symmetrically in the waveguide and
magnetized either in the same or in opposite directions (Figure 5.7). In the first
case the propagation constants |k,| do not differ from each other for opposite
directions of propagation, but the field structures are different. In the second case
both the |k, | values and the field structures depend on the direction of propagation.

When the energy losses in ferrite are taken into account, the 1 components and
€ gain imaginary parts and the dispersion equations, e.g., (5.15), become complex.
Solutions of these equations yield complex propagation constants k, = k;, — ik, ;
the quantities k;, are the damping coefficients (decrements) of the waves. If the
imaginary parts of u, u,, and € are small as compared with the real parts, the
following approximate formula can be used:

ok! ok! ok,
"o_ v _n y v,
v = For _8;{# + —au; Py - (5.16)

Near ferromagnetic resonance, where p1” and 1] are of the same order of magnitude
as p' and p;,, this formula cannot be applied and it is necessary to find the complex
roots of the dispersion equations. The results of this calculation [158] are shown
in Figure 5.8. One can see from this figure that, in a position of the ferrite plate
near the point of circular polarization of the magnetic field, the losses depend
strongly on the direction of propagation. This phenomenon, which can be named
nonreciprocal damping, is widely used in microwave ferrite devices. Note that the
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Real and imaginary parts of the propagation constant versus the external steady magnetic
field for different locations of the magnetized ferrite plate in a rectangular waveguide
[Figure 5.4(b)] calculated by computer solving of (5.15) [158]. Thickness of the plate
d = 0.02a. Frequency is 9.4 GHz, My = 170 G, w; = 2 x 10° s™1, ¢ = 9, the values of p
and p, were obtained using (1.69).

maximal damping occurs at the external magnetic-field value that coincides with
the ferromagnetic-resonance field calculated with formula (1.92) for an ellipsoid
with the same ratio of dimensions as for the ferrite plate in the waveguide.

5.2.3 Microwave ferrite devices

Devices in which the waveguides with transversely magnetized ferrite are used
can perform almost all functions that perform the Faraday devices discussed in
the previous section. Their parameters, in most cases, are not worse than the
parameters of Faraday devices, whereas the constructions are simpler.

Consider first the isolators. One of them, a resonance isolator, in which the
above-mentioned effect of nonreciprocal damping is used, is shown schematically
in Figure 5.9(a). The dielectric plate serves to enhance the concentration of the field
in the ferrite plate. Resonance isolators of this type have, in centimeter-wavelength
range, forward losses of 0.2-0.3 dB and isolation (the ratio of backward to the
forward losses) of more than 100 in a frequency band of approximately 20%.

Every waveguide that contains points with circular (or nearly circular) polariza-
tion of the magnetic field can be used to design the resonance isolator. In the case
of a microstrip or a coaxial waveguide, a dielectric sample should be inserted to
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FIGURE 5.9

Microwave ferrite isolators using (a) resonance absorptions and (b) field-displacement
effect.

FIGURE 5.10
Coaxial resonance isolator and its parallel-plane analog.

obtain such points. Microstrip and coaxial waveguides with dielectric and ferrite
samples cannot be analyzed rigorously, and a parallel-plane waveguide is often
used as an approximate model. In Figure 5.10, a coaxial isolator and its parallel-
plane analog are shown. Itis clear from symmetry considerations that, without the
dielectric sample, it is impossible to attain different losses at different directions
of propagation. The microstrip and coaxial waveguides are wide-band. To get
a wide-band isolator it is necessary only to ensure the ferromagnetic-resonance
condition in the whole frequency band. This can be achieved, for instance, by the
use of a nonuniform steady magnetic field. The frequency band of such isolators
can be as large as an octave, the forward losses being 0.2-0.4 dB, and isolation,
not less than 50.

The design of an isolator that uses the above-mentioned field-displacement effect
is shown schematically in Figure 5.9(b). The dimensions and the position of the
ferrite plate are chosen to make the electric field of the forward wave equal to zero
at the place of the absorber. It has been pointed out above that one of the waves is
effectively ‘pushed out’ of the ferrite plate if z; < 0. This requirement must be
fulfilled for good performance of a field-displacement isolator. The characteristic
parameters of this device are: forward losses 0.1-0.3 dB and isolation ~ 100. The
field-displacement effect has been applied, as well, in constructing nonreciprocal
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FIGURE 5.11
Latching ferrite phase shifter. The arrows show one of the two magnetization directions.

devices, isolators and circulators using wide microstrip waveguides [330]. These
devices have been called edge guided devices.

Let us briefly consider the ferrite microwave phase shifters. The rectangular
waveguide with a magnetized ferrite plate, which has been discussed above, is
the simplest nonreciprocal phase shifter. The steady magnetic field is, in this
case, much less (or, sometimes, greater) than its resonance value Hyes. Then the
decrement k; can be sufficiently small at required values of the nonreciprocal
difference 6k, as seen in Figure 5.8. The fields exceeding Hy are used at low
frequencies to avoid the so-called initial losses caused by intrinsic ferromagnetic
resonance (Section 8.3).

To design a reciprocal phase shifter we must put the ferrite plate into the central
plane of the waveguide (g = [ in Figure 5.4) or use two plates symmetrically
placed and magnetized in the same directions (Figure 5.7).

A ‘toroidal’ nonreciprocal phase shifter is shown schematically in Figure 5.11.
If the ferrite has a sufficiently great value of remanent induction B; and low coer-
cive field H,, then the phase shift can be controlled by short (e.g., microsecond)
current pulses, and the phase shifter is a ‘latching’ device (with ‘magnetic mem-
ory’). It should be noted that the phase shifts in this device can be calculated
approximately on a model of a waveguide with two ferrite plates magnetized in
opposite directions (Figure 5.7). The typical parameters of such devices are:
losses 0.5-1 dB for the phase shift of 360° (i.e., the figure of merit is more than
300 deg dB~!) in a 10% frequency band.

5.3 Resonators with gyrotropic media

We turn now to another fundamental problem of the electrodynamics of sys-
tems with gyrotropic media, to the problem of oscillations of an electromagnetic
resonator containing such medium.
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5.3.1 Eigenoscillations and forced oscillations

Consider a hollow resonator containing a medium the parameters of which, ¢
and © are arbitrary functions of coordinates. Let us neglect, first, all kinds of
losses, i.e., assume ¢ and g to be Hermitian tensors (Section 4.1) and suppose the
conductivity of the walls to be infinite. We introduce the complex amplitudes Ce,,
and iCh,, of the fields of eigenoscillations (C is an arbitrary real quantity, and e,,
and h,, are the eigenvectors). These complex amplitudes must satisfy the Maxwell
equations (4.14) and (4.16) with je = O and the boundary conditions (4.5).
Hence,

Wy Wy —
roth, = e, rote, = —~ph, (5.17)
c
and, at the resonator surface S,
e, xny=0 mnoph, =0 (5.18)

where my is a unit normal to S, w, is the eigenfrequency corresponding to eigen-
vectors e, and h,, and v indicates the number of an oscillation mode.

If € and ;i are symmetric tensors (in particular, scalars), their components
are real in the absence of losses. Then, the eigenvectors e, and h, satisfy
equations (5.17) with real coefficients and can be taken as real. The corresponding
eigenoscillations are standing waves. However, if 1z or ¢ have antisymmetric
components (which are imaginary in the absence of losses), the solutions of (5.17)
are complex. It means that the fields of eigenoscillations of a resonator with
gyrotropic medium are not standing waves. The eigenfrequencies, nevertheless,
remain real [153], as it should be for a system without losses.

Consider now the forced oscillations of the resonator, i.e., the excitation of
harmonic oscillations, with frequency w, under the action of external current
density jex;, external charge density pex, external magnetization m.y,, and external
fields at the apertures Sy in the resonator walls. The quantities Jex, Pext, and My,
as well as the external electric field eex and the external magnetic induction by
at Sy, are assumed to be known. The Maxwell equations for the fields of forced
oscillation and the boundary conditions are written as follows:

rote + ikoph = —id4mkomex (5.19)
div (ﬁh) = —4ndiv My (5.20)
roth — ikgee = f?jex, (5.21)
div (?e) = 4T Pext (5.22)
19 X (€ X Np) = €ext noph = ngbex on S

ng X (e Xxng) =0 noﬁh =0 on S-—S5;. (523)




132 5 Waveguides and resonators with gyrotropic media. Microwave ferrite devices

The complex amplitudes of the forced-oscillation fields can be represented in
the form

e=Y fe,-Vo h=)Y MHh, +Vy (5.24)
v=1 v=1
where e, and h, are the above-considered eigenvectors, and the coefficients £,
and H,,, as well as the gradient functions ¢ and 1, are to be found. (The distinction
of the signs before Vi and V4 in (5.24) is due to tradition.)
Note that the eigenvectors e, and h,, satisfy the orthogonality relations [153]

/ e eVepdV = [ hiuViypdV =0 (5.25)
Vo VO

/ etce, dV = [ hiuph,dV =A,. (5.26)
Vo Vo

where V; is the resonator volume and A, is the Kronecker delta symbol (Ap-
pendix C).

To find the coefficients £, and H, we multiply the first expression in (5.24)
by ¢ and then multiply it scalarly by e,. The second expression in (5.24) is
multiplied, similarly, by 7 and by h,,. Integrating the obtained expressions over
Vb and taking into account the orthogonality relations (5.25) and (5.26), we get
the formulae

£, = / elcedV  H,= | h:iphdV. (5.27)
Vo Vo

Then we multiply (5.19) by h} and (5.21) by e; and integrate over V. After
some transformations, using (5.27) and the boundary conditions and taking into
account that ¢ and p are Hermitian tensors, we obtain ultimately

—iwl, +w, F, — iww,G,

E, = 5.2
w2 — w? (5.28)
I, +iwF, + %G,
H, = 2 — (5.29)
wl—w
where
I, = 47r/ €l JexdV (5.30)
Vo
G, = c/ h;meqdV (5.31)
Vo

F,= c/ (h: X eex,) ngdS. (5.32)
S
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If the losses are small (1" < p', ! < pl,, etc.), they can be taken into account
approximately by the following substitution in (5.28) and (5.30):
wl
! s ! H v
w w,+w, =w, +1 5.33
v = W, v =W, Figs (533)
where w{, can be assumed to be equal to w, calculated without allowance for
losses, and Q,, is the quality factor of the resonator for the vth mode.
We do not consider the calculation of the gradient functions as they do not play
an important role in most cases. We note only that ¢ is determined by pex and ¥
is determined by ey and bey;.

5.3.2 Waveguide resonators

A waveguide resonator is a section of a waveguide bounded by two metal planes
perpendicular to the waveguide axis. The transverse components of the electric
field (which is a superposition of fields of the incident and reflected waves) should
be equal to zero at these planes. This boundary condition can be satisfied by
the waves of a single mode only if the electric field structure for this mode is
reciprocal. If the propagation constant k(w) is also reciprocal, the equation for
the resonator eigenfrequencies w,, has the form

Fw)="0 p=123, (5.34)
where [ is the resonator length. If the propagation constant is nonreciprocal, then
k(w) in the left-hand side of (5.34) is replaced by [k (w) + k—(w)]/2.

It was shown in the previous section that both electric-field structure and prop-
agation constant are reciprocal for waves TEno in a rectangular waveguide filled
with transversely magnetized ferrite. Therefore, an equation for the eigenfrequen-
cies w,, of a resonator that is a section of such a waveguide can easily be found
using (5.11) and (5.34) [247]

2
(w,,) _wH(wH-}-wM)—w?,
wuo (Wi +wm)* — w2

(5.35)

where wyo = (¢/vE)\/(nm/a)? + (pr/1)? is the eigenfrequency of the rectan-
gular resonator filled with isotropic medium with the same permittivity € and
1 = 1. The dependence of w, on wy calculated by equations (5.35) is shown
in Figure 5.12. It resembles the Wien graph for the eigenfrequencies of coupled
oscillatory circuits (e.g., [256]). Thus, the resonator with ferrite can be regarded
as a system consisting of two coupled subsystems: the resonator and ferrite.

The electric field structure and the propagation constant of a circular waveg-
uide with a longitudinally magnetized ferrite cylinder (Section 5.1) are also both
reciprocal. Therefore, the eigenfrequencies of the waveguide resonator that is a
section of such a waveguide (Figure 5.13) can be, as well, calculated using equa-
tion (5.34). These frequencies will be different for the right-hand and the left-hand
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|

FIGURE 5.12

Magnetic-field dependence of the eigenfrequencies of a rectangular resonator filled with
magnetized ferrite calculated using (5.35) (solid curves). Dashed lines show the uncoupled
frequencies of the resonator (w,0) and of ferrite (w 1). wm = 0.5w,0.
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FIGURE 5.13
Cylindrical resonators with ferrite samples.

circular polarizations (relative to the direction of the steady magnetization), i.e.,
for exp(—i¢p) and exp(iy) dependences of the resonator fields on the azimuth an-
gle. It should be noted that the repulsion of the w,, vs wy curves (analogous to that
shown in Figure 5.12) will be much stronger for the right-hand polarized mode
because in this case the resonator—in terms of coupled oscillations—interacts
stronger with ferrite.

5.3.3 Ferrite resonators

The concept of coupled oscillations can be applied, as well, to open resonators
consisting of dielectric (with € >> 1) and ferrite samples. However, of greater in-
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terest are the so-called ferrite resonators, i.e., open resonators that contain nothing
but a ferrite sample. The oscillations of such resonators, which can be regarded
as coupled oscillations of an open dielectric resonator and ferrite, are called mag-
netodynamic oscillations. It should be pointed out that these oscillations take
place in all experiments on ferromagnetic resonance in samples (e.g., ellipsoids)
of a weakly conducting substance. The treatment of ferromagnetic resonance in
Section 1.5, in which this fact was ignored, is approximately correct only if the di-
mensions of the sample are small in comparison with the wavelength 27c/(w+/€).

The eigenfrequencies of magnetodynamic oscillations can be calculated using
the method of coupled oscillations in the form proposed by Auld [25]. Let us con-
sider briefly this method. We rewrite, first, equations (5.17) for eigenoscillations
(assuming ¢ to be a scalar and omitting the subscripts ) in the form resembling
(5.19) and (5.21):

rote + ikgh = —ikgdmm roth — ikgee = 0. (5.36)

These equations can be regarded as equations for forced oscillations of a resonator
with an isotropic medium excited by the magnetization m. Together with the
equation of motion of the magnetization (1.36) they form a system of equations
for coupled oscillations of a resonator and ferrite.

Taking into account (5.24), we can write (1.36) as

iwm + ym x Ho+vMo x Vi = —yMo x Y _ H,h,. (5.37)

As I, = F, = 0 and G, is determined by (5.31), expression (5.29) now has the
form

sz

H, = 2
Y w?—w?

/ h;mdV (5.38)
Vi

where the integration is over the volume of the sample. So, we have obtained
a system of equations (5.37) and (5.38), in which w, are the eigenfrequencies
of the resonator with isotropic medium, h, and V1 are the eigenfunctions of
this resonator, and w is the unknown frequency of the coupled oscillations. The
magnetization m in (5.38) can be represented by an infinite sum of eigenfunc-
tions. If the sample dimensions are small, the magnetizations of magnetostatic
modes (Section 6.3) may be taken as such eigenfunctions. The infinite system of
equations (5.37) and (5.38) is rigorous, but it is difficult to find its strict solutions.
Approximate solutions can be found if we limit ourselves to a finite number of
eigenmodes of the resonator and the sample, which most strongly interact with
each other.

This method was used [276] to analyze the magnetodynamic oscillations of a
ferrite sphere. Only the uniform mode of the magnetization oscillations and the
two lowest degenerate modes of a dielectric sphere were taken into account. The
frequency w; of these modes is equal approximately (if e 3> 1)towc/(R+/e) where
R is the radius of the sphere. The calculation yields the following expression for
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FIGURE 5.14

Eigenfrequencies of magnetodynamic oscillations of a YIG sphere with 2R = 3.72 mm.
Solid curves represent the theoretical dependence (5.39), circles represent the experimental
data [328], the dashed line corresponds to the Kittel frequency of uniform ferromagnetic
resonance at R — 0.

the ferromagnetic-resonance field in a ferrite sphere:

2
Hyes = % + %MMOE{—J' (5.39)
The field dependence of the resonance frequency calculated by (5.39) is plotted in
Figure 5.14 together with experimental data. One can see from this figure, as well
as from (5.39), that the ‘usual’ condition for ferromagnetic resonance in a sphere
(Hes = w/7) is approximately valid only if w < wy, i.e., at low frequencies or
for small spheres. In this case, it follows from (5.29) that

4
Hues = 2 4 Z4nMoe (hoR)*. (5.40)
Y T

It should be noted that the influence of the sample dimensions on the frequency
of ferromagnetic resonance (or, more correctly, of magnetodynamic oscillations)
was calculated by Hurd [187] in another way, solving Maxwell’s equations by the
method of successive approximations. He obtaine

w 2
Hys = ; + E47T'M0(E + 5)(’CoR)2. (5.41)

If £ > 1, this expression differs from (5.40) only by a factor very near to 1.
Formula (5.41), in contrast to (5.40), is valid at arbitrary values of ¢, but, as well
as (5.40), it holds only for small spheres. Formula (5.39) is not limited by this
condition but is valid only at e >> 1.
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5.3.4 Use of perturbation method

Let us return to the case of a ferrite sample in a hollow resonator. If the volume
of the sample is small, as compared with the resonator volume, the perturbation
method with quasistatic approximation of the internal field (Section 4.5) can be
used to calculate the eigenfrequencies and the quality factors of the resonator. As
an example of the application of this method, consider a cylindrical resonator with
the mode TE,,,, containing a small ferrite sphere on its axis [Figure 5.13(b)].
(Some other examples can be found in [153].) If the sphere is magnetized along
the resonator axis, the mode with circular polarization should be taken as an
unperturbed mode because this mode will remain an eigenmode after perturbation.

The unperturbed-field components can be written in the form [151] (see
also [153]):

Z
h, =k*Zy,  hi= ‘:i—zwl e=koZzox Vb

Z =sink,z Y1 = Jim(kp) exp(imy) k., = % (5.42)

where kpo is the nth root of the equation J]m|(!€po) =0 (meI is the derivative
of the Bessel function with respect to the argument) and py is the radius of the
resonator. Using formula (4.83) and Table 4.1, we obtain for the mode TE;

2
+ -1 -1
AN pEpa =l a7 e-lgomg
kol

Bt e+ 2 D Tex2’

- R?
wZwo -84—
w Ipg

(5.43)

where R is the radius of the ferrite sphere, and the signs + correspond, respectively,
to the right-hand and left-hand polarizations of the mode.

If the sphere is magnetized in the direction perpendicular to the resonator
axis and parallel to the ac magnetic field, both the unperturbed and perturbed
eigenmodes are the modes with linear polarization. In this case, u + p, in (5.43)
will be replaced by 4.

Resonators with small ferrite samples can be used, as Nikol’skii proposed [298],
(see also [153]) to measure 7. components and ¢ of ferrites. For polycrystalline
ferrites, there are four complex parameters: L, fq, K|, and ¢. To find their real and
imaginary parts it is necessary to measure the changes of the resonance frequency
and of the quality factor of a resonator in four independent experiments. Suppose
that a sphere in the cylindrical resonator with TEq) mode (Figure 5.13) is used.
Then the real and imaginary parts of z and p, can be found, according to (5.43),
from the measurements with a sphere magnetized along the resonator axis and
put at ¢ = 0. The component y is found using the sphere in the same position
but magnetized in the direction perpendicular to the resonator axis. To find € the
sphere must be put at g = /2.

Resonators with small ferromagnetic, ferrimagnetic, or antiferromagnetic sam-
ples, mostly spheres, are widely used in measurements of the magnetic-resonance
parameters: the resonance field and the resonance linewidth. In this case, the
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second term in the integrand of (4.83) can be neglected, either because it is small
as compared with the first term, or because the frequency difference is measured
with respect to the frequency of the resonator with the same sample but far from the
magnetic resonance. The first term in the integrand of (4.83) can be transformed
according to (4.94), and (4.83) takes the form

w-—wy 2w

=—"— | R:\°hedV 5.44
” W Jue o X ho (5.44)

where hy is the external magnetic field and Y is the external susceptibility tensor.

Consider the most important case in which the sample is in the region of a
linearly polarized ac magnetic field and the dimensions of the sample are small
enough to regard this field as independent of coordinates in the volume of the
sample. Then, taking (4.84) into account, we find from (5.44) that

bw = —ZWwOQE)(e' (5.45)
Vo
l ‘/] n
6 =) =dra—x". 5.46
(Q) X (346)

Here x° is the transverse diagonal component of X¢, V; is the volume of the
sample, V; is the volume of the resonator, and

_ _Volhgl?

a T, Thol?av (5.47)
(R is the field at the point where the sample is located). The factor a can be
easily calculated for resonators of simple shapes. For instance, a = 2 in the case
of a sample in the magnetic-field maximum of a rectangular resonator with TEo
mode. For other convex resonators, « differs but not very strongly from this value.
It should be pointed out that 6w [or §(1/Q)] is the difference between w (or 1/Q)
values measured either with and without the sample or, in both cases, with the
sample but at and far from ferromagnetic resonance. The latter case is more often
used (if the resonance curve is not too wide).

5.4 Waveguides and waveguide junctions with ferrite samples

In this section the properties of waveguides with ferrite samples will be studied.
We begin with the simplest problem of this type, the problem of a small ferrite
sample in a regular (i.e., unbounded and with constant cross section) waveguide.
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5.4.1 Ferrite ellipsoid in a waveguide

Consider, according to [154], an ellipsoid with parameters 7 and € in a regular
waveguide. The amplitude of the incident wave is given, and the electromagnetic
field in the waveguide far from the ellipsoid is to be found. The perturbation
method in such a variant, when the given field of the incident wave is assumed
to be the unperturbed field acting on the sample, can lead to an approximately
correct solution only if the ferrite sample is very small. For realistic dimensions
and parameters of the sample, we must suppose that the sample magnetization is
determined by the self-consistent field, which is the sum of field ho of the incident
wave and the field h, radiated by the sample. If condition (4.93) is satisfied, the
magnetization can be written as

m = x°(ho + h:). (5.48)

The radiation field excited by the magnetization m, in general, is the sum of
all normal waves propagating in the waveguide and the near (nonpropagating)
modes. However, it is of no sense to substitute the highly nonuniform near fields
into equation (5.48), which is valid only for the uniform fields. And if there exists
only one propagating wave, then only the field of this wave must be taken into
account.

Assume, e.g., that the ellipsoid is located (Figure 5.15) at the axis of arectangu-
lar waveguide in which only the wave TE o propagates. The transverse component
of the given magnetic field of this wave is

ho = sin —7?— exp(—ikyy). (5.49)

The radiation field should be calculated by solving the problem of excitation of the
field in a waveguide by a given magnetization, which is analogous, in some sense,
to the problem of excitation of the field in a resonator considered in the preceding
section. We write down the result of such calculation for the field TEo [154]:

Viky
S

where V; is the volume of the ellipsoid and S is the area of the waveguide cross
section. Substituting (5.49) and (5.50) into the projection of (5.48), we find m.
and the transverse component of the radiation field

hyz = —iwmg sin 7% exp(Fikyy) w =4 (5.50)

iwx®

hig = ——F——
e 1 +iwx®

sin = exp(Fikyy)- (5.51)
a

The reflection coefficient related to the cross section in which the center of the
sample lies is

heo(y=0)  —iwx®

r = .
hOa:(y = 0) 1+ ine

(5.52)
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FIGURE 5.15

Dependence of the transmission |D| and reflection |I'| coefficients and of the relative
absorbed power T at resonance on the coefficient of coupling for a magnetized ferrite
ellipsoid in a rectangular waveguide [154].

The transmission coefficient related to the same cross section

hoz(y = heo(y = 1
p=lo:v=0+h.(y=0 _ 1 (5.53)
hos(y = 0) 1+ iwxe
The ratio of the power absorbed by the sample to the power of the incident wave
T=1-|T)?-|D* (5.54)
At ferromagnetic resonance (x*' 22 0, x*' = x*/.
—q 1 . 2q
= — Dps = —— Tres = —— 5.55
FI'ES 1 + q res 1 + q res (l + q)2 ( )
V] 11
g = WX s = 4T —]ky,\"'m. (5.56)

S
The quantity g can be called the coefficient of coupling of the sample with the
waveguide. The dependences of I'res, Dres, and T, on q are plotted in Figure 5.15.
With increasing g, i.e., with growing sample volume and narrowing resonance line,
| = 1,D - 0,and T — 0.

Analogous calculation for the sample at a point of circular polarization of
the magnetic field with right-hand rotation (with respect to the direction of the
steady magnetization) shows that, in this case, ', = 0 at any value of g, while
D —1andT — Oatq = 0and g — o00; the total absorption (T = 1) occurs at
q = 1. The sample located at a point of the left-hand circular polarization does
not influence, as could be expected, the wave propagation in the waveguide. So,
a section of a rectangular waveguide with a ferrite sample located at a point of
circular polarization and magnetized along a normal to the wide waveguide wall
is a nonreciprocal band-rejection filter.
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FIGURE 5.16

Rectangular waveguides coupled by a magnetized ferrite sphere located (a) at points with
linear polarization of the ac magnetic field (a band-pass filter) and (b) at points with circular
polarization (a four-port circulator).

The problem of an ellipsoid in a short-circuited waveguide can be solved, as
well [154]. Both the external (h) and the radiation (h;) fields are, in this case, the
sums of the fields of incident waves and waves reflected from the shorting plane.
If this plane is located at a distance d = n7/ky (n = 0,1,2...) from the sample,
then

_1-2

Lies = . 5.
res 1+2q ( 57)

5.4.2 Coupling of orthogonal waveguides. Ferrite band-pass filters

Let us discuss now the problem of a ferrite ellipsoid that couples two waveguides.
Consider, e.g., two rectangular waveguides perpendicular to each other, with a hole
in their common wall and a small ferrite ellipsoid in the hole [154]. Assume that
the ac magnetic field is uniform in the volume of the sample and is the sum of TEg
fields of both waveguides. Of course, these assumptions are not valid strictly, but
they allow one to solve the problem rather easily and obtain qualitatively correct
results.

If the hole is in the middle of both the waveguide wide walls, as in Figure 5.16(a),
then, with the mentioned assumptions, it follows from (5.48) that

My — Xe (hOxl + hrzl ) + iXea (h0y2 + hry?)
my = —ix‘; (hOIl + hra:] ) + Xe (h0y2 + hry?) (558)

where the subscripts 1 and 2 correspond, respectively, to the lower and upper
waveguides in Figure 5.16, and the axes are directed as in this figure. The
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characteristics of the considered waveguide junction can be obtained [154] in
the same manner as in the above-treated problem. We cite, as an example, the
expression for the transmission coefficient in the case of Figure 5.16(a) when both
waveguides are short-circuited at the distance d from the sample:

4ig cos? k,d exp(-2ik,d)

Dyes = - .
™7 1+ 4gcos kydexp(—ik,d)

(5.59)

One can see that |Dys| — 1 (if kyd = 0,7) when ¢ — co. This means that
the ferrite sample of sufficiently large dimensions or with sufficiently narrow
resonance line reradiates almost all power into the second waveguide.

Ferrite samples in waveguides and waveguide junctions are widely used in
microwave engineering to design ferrite filters (¢.g., [179]), which can be tuned
over very broad frequency ranges by changing the steady magnetic field. It has
been already mentioned above that a nonreciprocal absorption band-rejection filter
is realized with the use of a ferrite sample at a point of the magnetic-field circular
polarization. Using a sample at a point of linear polarization (at the waveguide
axis), a reflection-type band-rejection filter can be made.

The above-considered junction of two short-circuited waveguides with a ferrite
sample in a hole between them [Figure 5.16(a)] is a band-pass filter. Small losses
in the center of the transmission band (at ferromagnetic resonance) take place in
such filter if ¢ > 1. But if the sample is put at a point of the circular polarization,
the minimal losses would occur when ¢ = 1.

The nonreciprocity, which appears when the ferrite sample is located at a
point of the circular polarization of the magnetic field, provides a possibility to
realize a filter-circulator [Figure 5.16(b)]. If the device is feeded from port 1,
the ac magnetic field of the incident wave has, at the point where the sample
is located, the right-hand circular polarization (relative to the direction of the
steady magnetization shown in the figure). Only such a wave, i.e., the wave that
propagates towards port 2, will be excited by the sample in the upper waveguide.
There will be no reflected wave in the input port 1, and no power will be transmitted
to port 4. It is easy to make sure that the power from port 2 is transmitted into
port 3, and so on. Thus, the device is a circulator (Section 5.1). At the same time,
it is a filter, which can be tuned by changing the steady magnetic field.

FIGURE 5.17
Coaxial ferrite filter.
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Other waveguides can also be applied in designing microwave ferrite fil-
ters [179]. The coaxial filters (Figure 5.17) are the most widely used. As the
parameters of the coaxial waveguide and of the coils weakly depend on frequency,
such filters can be tuned (by changing the steady magnetic field) in frequency
bands up to several octaves, which lie in a very broad range, approximately,
of 0.1-20 GHz.

The losses (at the central frequency) of the band-pass ferrite filters, in which, as
in the above-considered examples, one ferrite sample is used, are 0.5 -1 dB. The
bands (at constant magnetic field) are some tens of megacycles. To improve the
shape of the amplitude-frequency characteristic, filters with two, three, and even
more ferrite samples can be used.

5.4.3 General properties of nonreciprocal junctions

Ferrite band-pass and band-rejection filters discussed above are examples of non-
reciprocal waveguide junctions. To study the general characteristics of such
junctions the scattering matrix is used to great advantage (e.g., [247]). Let us
review briefly some properties of this matrix.

Consider a junction with n waveguide ports (Figure 5.18). In every port there
are, in general, an incident wave and a wave reflected from the junction. Their
fields can be written as

ef = ApEpexp (—ik.p2) e, = Bp&pexp (ikzp2)
hi = AyHpexp (—ikzp2) h, = ByHpexp (ik.pz)  (5.60)

where £, and H,, are the eigenfunctions of the waveguides that form the ports and
p is the number of aport (p = 1,2,...n).
Assuming the junction to be linear, we can write

B, =Y Spdq (5.61)
q=1
or, in the matrix form,
1Bl = ISl | All (5.62)

where || A|| and || B|| are column matrices of the amplitudes A, and By, and ||S||
is a square scattering matrix:

Su Sz .. Sm
S S»n ... S

Isi={ 7% TR T (5.63)
Sn] Sn2 Snn

The element S, is the reflection coefficient in the port p in the absence of incident
waves (i.e., in the absence of sources and unmatched loads) in all other ports. The
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FIGURE 5.18
Nonreciprocal waveguide junction.

element S, is the transmission coefficient from port q into port p in the absence
of incident waves in all ports but the ¢ port.

For a junction without losses the scattering matrix ||S|| is unitary? (e.g., [247)).
The scattering matrix for a reciprocal junction is symmetric (Spq = S,p). For a
nonreciprocal junction,

Sep — Spg = 6Spq # 0. (5.64)

To find the nonreciprocal difference 6 S, formula (4.63) can be used. The fields
with subscripts 1 and 2 in this formula are the sums of the fields of incident and
reflected waves. Suppose that, for a process 1, the incident wave exists only in
port p, and for a process 2, only in port g. Then. taking (5.60) into account, we
can obtain from (4.63)

1 J,
2A4,A,
Thus, J, # 0 is the condition for nonsymmetry of the scattering matrix, i.e., for
the nonreciprocity of the junction.

Consider, first, a two-port junction. In the absence of losses, the unitary matrix
of this junction can be written in the form [247]

aexp(ia) VT = aZexp(io + i)
—V1 —aZexp(iff — ip) aexp(if)

where a, a, (3, and ¢ are arbitrary (but @ < 1) real quantities. One can see
from (5.66) that the two-port junction without losses can be a nonreciprocal

651"1 =

(5.65)

ISl = (5.66)

2 A matrix ||.S]| is called unitary (e.g., [293]) if || S| - || S||* = l7]], where || 5| is a transpose matrix
with elements (S)pq = Sqp, ||S*|| is a complex conjugate matrix with elements (5*)pq = Spqsand
1]l is a diagonal matrix with elements I, = 1 (a unit matrix).
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phase shifter but cannot be an isolator. The scattering matrix of an ideal isolator

(S11 = S22 = S21 = 0, |Si12| = 1) is not unitary. A junction with such matrix
can be realized only in the presence of losses. One more interesting conclusion
follows from (5.66): as |Sy1| = |S2|, if we match an arbitrary two-port junction

(without losses) from one side, it will be matched from another side, too.

Let us pass now to three-port junctions. It is easy to show, using the unitarity of
the scattering matrix, that a reciprocal three-port junction without losses cannot be
matched simultaneously from all three ports. A nonreciprocal three-port junction
without losses can be matched from all three ports and then becomes an ideal
circulator. Let us prove this important theorem.

If the junction is matched, i.e., Si; = S = S33 = 0, then it follows from the
unitarity of the scattering matrix that

Si«2513 = 0 S;] 523 = O S;I 532 - 0
[S12)? +|S%)* =1 1Su)* +|Su]* =1 1Si3)? + |Su)* = 1. (5.67)

The condition S},S13 = 0 can be satisfied if either S1; = 0 or Sj3 = 0. In the
first case, it follows from other conditions (5.67) that

Sin=S83=581=0  [Su|l=|Ss3|=[5nl=1 (5-68)
and in the second case
Sy =8S3=83,=0 ]S]zl = |523| = |S31I =1. (5.69)

The matrices with elements (5.68) and (5.69) represent ideal circulators with the
directions of energy transmission, respectively, 1 - 2 —+ 3 — land 1 —
3 — 2 — 1. The direction realized, depends, of course, on the direction of the
magnetization of the ferrite sample in the junction.

Circulators with four and even more ports can be made, as well. But then,
the reciprocity and perfect matching are not sufficient for the junction to be a
circulator. The phase shifts between transmission coefficients into different ports
must have definite values.

Symmetric three-port circulators, called Y circulators, have been designed using
different waveguides: rectangular, coaxial, microstrip. These circulators are,
perhaps, the most used microwave ferrite devices. The rectangular-waveguide
Y circulator is shown in Figure 5.19. Its operation can be explained in the following
way. The ferrite cylinder in the circulator can be regarded as a ferrite rod in a
cylindrical resonator with the quasi-TM;jo mode (independent of coordinate z
in the direction of the rod axis). The magnetic force lines for this mode are
shown in Figure 5.19 in the cases of isotropic (¢, = 0) and gyrotropic (¢, # 0)
rods. As pointed out in Section 5.3, the field in the resonator is the sum of the
fields of the right-hand and left-hand circular polarized oscillations, i.e., waves
propagating in opposite directions ‘along the azimuth’. In the case of an isotropic
(not magnetized) ferrite rod [Figure 5.19(b)] the wavelengths of these waves are
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(a) H,, Ferrite (b)

FIGURE 5.19
Y circulator: (a) an example of design, (b) ac magnetic force lines in and near the ferrite
cylinder when u, = 0, and (c) magnetic force lines when p, # 0.

equal, and the maximum of the total field is located opposite the center of the input
port (e.g., port 1) cross section. The power coming from this port is divided into
equal parts between ports 2 and 3. However, if the ferrite cylinder is magnetized,
the wavelengths of the waves propagating along the azimuth in opposite directions
are different, and the field maximum shifts to one of ports 2 or 3. By choosing the
proper parameters of the device (dimensions and the value of the steady magnetic
field) one can make the field minimum to coincide [Figure 5.19(c)] with the center
of port 2 or 3 (depending on the direction of magnetization of the ferrite cylinder).
Then, all the power from port 1 will be transmitted into one of these ports.

The above-stated reasoning can be applied, as well, to other designs of a
Y circulator because the main part of energy is concentrated in the ferrite sample,
and the configuration of the surroundings does not play an important role.

The Y circulator is a resonance device, and its frequency band cannot be very
large. To broaden it a ferrite sample with a highly nonuniform internal steady
magnetic field can be used. Frequency bands wider than 30% can be achieved in
such way. The forward losses of a Y circulator are usually less than 0.5 dB, and
isolation is more than 20 dB [179, 330, 352].
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Magnetostatic waves and oscillations

6.1 Magnetostatic approximation

It was shown in Section 4.2 that ‘slow branches’ (with small phase and group
velocities) appear in the spectrum of electromagnetic waves in an unbounded
magnetized ferromagnet. Similar branches exist, as well, in the spectra of waves
in waveguides containing ferromagnetic (or ferrimagnetic) media [356]. Solving
boundary problems for systems with gyrotropic media, we meet with great diffi-
culties. They increase especially in the regions of strong dispersion, in which the
slow branches appear. At the same time, for slow waves

k»koz“;’. (6.1)

This allows us to use the method of successive approximations. In the zero ap-
proximation, taking (6.1) into account, we neglect the term iko € e in the Maxwell
equation (4.16). Then, this equation and (4.15) take the same form as the mag-
netostatic equations (4.6). In the problems we deal with, jex, = 0. Hence, the
equations can be written as

roth =0  div (‘;h) =0. (6.2)

Having solved these equations with regard for boundary conditions, we find h
and m = Y h, the dispersion relations for normal waves, the eigenfrequencies of
resonators, etc.

In the first approximation with respect to ko/k, the electric field e can be found
from (4.14) and (4.17). In the case of pexy = 0 and constant scalar ¢, these
equations take the form

rote = —koph dive = 0. (6.3)

In the second approximation, using equation (4.16), we can calculate corrections
to the dispersion relations and eigenfrequencies. The waves and oscillations for
which this method can be applied are called magnetostatic waves and oscillations.
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The above-mentioned zero approximation was already used in Sections 1.5
and 4.5. However, only ellipsoidal samples were considered, and an additional
assumption of the uniformity of the ac magnetization was made. Therefore, it was
possible to use the solution (1.82) of the magnetostatic problem for an ellipsoid.
Now we have to solve the magnetostatic equations for other boundary conditions
and without assumption of uniformity of the magnetization.

With increasing wave number k the exchange interaction (Section 1.1) becomes
important. But in a certain interval of k values (which will be defined below) it is
possible to neglect this interaction. Magnetostatic waves with such wave numbers
must be called nonexchange magnetostatic waves. Often they are called, simply,
magnetostatic waves, and magnetostatic waves with allowance for exchange in-
teraction are called spin waves, although both of them are spin waves, and both
are magnetostatic waves. Moreover, the greater k is, the more applicable is the
magnetostatic approximation.

We consider first the nonexchange magnetostatic waves as a limiting case of
the waves studied in Section 4.2. If (6.1) holds. it is possible to retain only the
first term in (4.32). Then, for scalar ¢, we get

i

k2
= = —cot’fp = —2— 6.4
1y k k‘% + k!% (64)
where 6 is the angle between Mj and k. For a ferromagnet magnetized to
saturation, u; = 1, and, neglecting losses, we find from (6.4) and (1.54) that

w? = wy (Wi +wasin? ;) . (6.5)
One can see from (6.5) that w depends on the direction of propagation and lies in
the range

w Sww = Vwr(wy +wu) (6.6)

in which p < 0. The frequency w is independen: of the wave number k, i.e., the
group velocity vg, = Ow/0k = 0.

The field structure of the considered waves can be easily found using the general
results of Section 4.2. In particular, for 8, = 0 vectors e and h are transverse and
right-hand circularly polarized. For 8, = /2 the vector e is parallel to My, and
h is parallel to the propagation direction. It is easy to make sure that in both cases
and for arbitrary ;. values, as well, the power flow (Section 4.4) is equal to zero.
It correlates with the fact that vg, = 0 because the velocity of the energy transport
coincides (rigorously in the absence of losses) with the group velocity.

The decrement k" of the nonexchange magnetostatic waves in an unbounded
medium is infinite for an arbitrary value of the dissipation parameter of the medium.
This follows from the general relation

w" = vgk" (6.7)

which is valid for an arbitrary dispersion law in the case of small amplitudes and
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small losses. In this relation, k" is the imaginary part of the wave number for
a stationary wave (w” = 0), and " is the imaginary part of the eigenfrequency
(k" = 0), which differs from the dissipation parameter w; (Section 1.4) only by a
factor of the order of unity.

In reality, there are three reasons that lead to finite group velocity and, therefore,
to finite values of energy flow and damping of magnetostatic waves: the influence
of the term in Maxwell’s equation neglected in the zero magnetostatic approxi-
mation, the influence of the exchange interaction, and the influence of boundary
conditions (Section 6.2). However, in a certain range of k' values the influence of
all three factors on the dispersion law appears to be small, and expression (6.5)
can be used in the analysis of some important problems.

One of them is the degeneration of uniform magnetization oscillations and
nonexchange magnetostatic waves. Comparing (6.5) with formula (1.92) for the
eigenfrequency wy of uniform oscillations of an ellipsoid (when the directions of
H., and M coincide), we see that wy lies either in the interval (6.6) or above it.
It is easy to make sure that the condition for degeneration (i.e., for wp to lie in the
mentioned interval) is

z

NN
H. > (Nz +— 1’) M, (6.8)

where H.g is the external field and N, , . are the demagnetization factors of the
sample. This condition cannot be satisfied for a thin cylinder magnetized along
its axis, and it is always satisfied for normally magnetized thin film. For a sphere
(6.8) can be written as

2
wo > §<.UM. (6.9)

We now have to derive the equations that can be used to solve more complicated
boundary problems in the magnetostatic approximation. According to the first
equation (6.2), the magnetostatic potential ¢ can be introduced:

h = V. (6.10)

Substituting (6.10) into the second equation (6.2), we obtain an equation

dw(ﬁvw)zo (6.11)

which can be called generalized Walker’s equation. To obtain the boundary
conditions we introduce local coordinates £, 7, ¢ with the ¢ axis coinciding with
the normal to the boundary surface S. It follows then from the general conditions
(4.4) thaton S

oYy Oy oYy Oy - =
= = (i1vw), = (mave), 612

where the subscripts 1 and 2 correspond to the two media.
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Let us show that expressions (6.4) and (6.5) can be found from equation (6.11).
Substituting the complex amplitude ¥ = g exp(—ik,z — ik, y — ik, z) (where 1
is a constant quantity) into (6.11), we get

k (‘ﬁk) =0. (6.13)

For ﬂ in the form (4.23), equation (6.4) directly follows from (6.13), and (6.5)
follows from (6.4) if 1) = 1. In the latter case (6.11) takes the form in which this
equation was first written by Walker [432]:

02111 azw a2,¢,
H(W-ng_i) +E§_0 (6.14)

(z axis is directed along Mp).
For a single crystal magnetized to saturation in the My direction, & has the
form (2.38), and (6.11) is written as
azd) 821/) BZ’KL’ 62’(/J
Moz T gz T Mo puay t 822 (6.15)
where i, iy, and p1, have the form (2.39). It should be noted that the antisymmet-
ric component p, does not enter (6.14) and (6.15), but it appears in the boundary
conditions (6.12). To obtain the expressions for w;, w,y, and w, [in (2.39)] we
have to substitute in (1.114) the components N{f', N33, and N{J of the anisotropy

tensor N for the corresponding components of the demagnetization tensor N
and substitute the sum N33 + N3 for N33 (Table 2.1).

For a uniform plane wave, ¢ = ¢ exp(—ikr). Then, it follows from (6.15)
that

Lg COSZ QO + Hy sin® g + ps sin 20 + cot By = 0. (6.16)

Here 85 and ¢y are the vector k angles in the coordinate system in which the

polar axis coincides with the My direction. The tensor N components must be
written, of course, in the same system. Substituting (2.39) into (6.16), we get

1 1
w? = wewy —w2+wiy (— (we +wy) + E(wz — wy) cos2pk + ws sin2gak> sinfy.

2
(6.17)
Consider first a uniaxial crystal. Suppose that My and H, directions coincide,
neglect the anisotropy in the basal plane, and take into account only the first
anisotropy constant in (2.31). Then, using expressions (2.42) (with Ha, = 0), we
obtain from (6.17)

2
(%’) = (Ho + 2Hp, cos200) (Ho + 2Ha; cos® 6p)

+4m Mo [Ho + Hai (3 cos?8p — 1 — sin?fy cos 2¢px)] sin’fy. (6.18)
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FIGURE 6.1
Coordinate axes for magnetostatic waves in (a) uniaxial and (b) cubic crystals. Axes z’,
y', and 2’ are the crystallographic axes.

Here Ha; = K /My, 0 is the angle between M, and the anisotropy axis z’, and
01 and ¢y are the angles of the vector k (Figure 6.1).

For a cubic crystal, we suppose again that the directions of M and H, coincide,
limit ourselves to the case of Ha, = 0, and consider the particularly interesting
case when M lies in the {110} plane. Then, analogously to the previous case
but substituting expressions (2.47) into (1.114) with g = 7 /4, we find

2
(%) = [H0+HA1 (—% +2cos26p + %coswo)]

1
X [H()-{- Hay (5 cos 26y + %008490)]

3 5 15
+47 My {Ho + Ha [—-Tg + 1 cos 26y + I—6~COS490

3 3 9 .2
+ (E — 708 260 + T3 cos490> cos 2<pk] } sin“ 6, (6.19)

where 6 is the angle between M, and the direction (100) (Figure 6.1). The
dependence of the frequency on 6, for different directions of propagation is shown
in Figure 6.2. One can see from the figure that w does not depend on ¢, when
M, is directed along the (100) or (111) axis, and this dependence is the strongest
when M is directed along the axis (110).

Comparing formulae (6.18) or (6.19) with formula (6.5) for an isotropic medium,
we see that, if M is directed along the anisotropy axis in a uniaxial crystal, as
well as along the axes (100) or (111) in a cubic crystal, these formulae coincide
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FIGURE 6.2

Dependence of the frequency of a magnetostatic wave in a cubic crystal on the direction of
M, for different propagation directions. 6 is the angle between the M and (100} axis in
a {110} plane. My = 139G, K| = 6 x 10°, Hy = 2.5 kOe.

after the following substitution in (6.5):
Hy— Hy+ HA (6.20)

Here, H* = 2H,; for a uniaxial crystal or for the axis (100) in a cubic crystal,
and HA = —(4/3)Ha, for the axis (111) in a cubic crystal (in the last case, if only
the first anisotropy constant is taken into account). These coincidences are the
manifestations of a general theorem, which states that, for the mentioned directions
of magnetization (the directions of extrema of the energy of anisotropy) and only
for them, the solutions of all electrodynamic problems in an anisotropic medium
are obtained from the solutions in an isotropic medium by the substitution (6.20).

The validity of the nonexchange magnetostatic approximation is limited, from
low k values, by the need to use full Maxwell’s equations, and from high & values,
by the need to take into account the exchange interaction. To estimate the lower
limit the following condition can be used: the difference between the frequency
(6.5) and the correct value of the frequency, found, e.g., from (4.42) or (4.43),
must not exceed a certain quantity. For media with narrow resonance lines, YAH
can be taken as such quantity. Then, we get

471'1@
AH

For a YIG single crystal (4w My = 1750G, AH = 0.3 Oe), kpin = 250 cm™~!. For
uniform oscillations in finite samples, kmi, in (6.2 1) must be replaced by 27/ dmax
where d is the smallest of the sample dimensions.

k > kmin = ko (6.21)
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The exchange interaction leads to the increase of the frequencies of magnetic
waves (Section 7.1) by a quantity ~ yDk? (where D is the nonuniform-exchange
constant). Requiring that the quantity yDk? should not exceed (for a single
crystal) YAH, we obtain the estimate of the upper limit of the validity of the
nonexchange magnetostatic approximation:

AH
k < kmax = R (6.22)
ForaYIG, D = 5.2x 1079, and kmax = 6 x 10%. So, there is an interval of k values
(for a YIG, approximately, 10?—10%) in which the nonexchange magnetostatic
approximation may be used to calculate the frequencies of magnetic waves or
oscillations.

6.2 Nonexchange magnetostatic waves in plates and rods

Magnetostatic waves in single-crystal ferrite films can be used in microwave
engineering to design miniature devices such as filters, resonators, and delay
lines. Therefore, we will study these waves in some detail: in this section, in the
nonexchange approximation and in Section 7.2, making allowance for exchange
interaction.

6.2.1 Volume waves in plates

Consider first an isotropic ferromagnetic plate magnetized to saturation along
the normal to its surfaces (Figure 6.3). Suppose that both surfaces of the plate
are metallized and there is no dependence of the fields on the coordinate z in
the direction perpendicular to the direction of propagation. Then, the solution
of (6.14) is!

¥ = (Acosk,z + Bsink,z)exp(—iky). (6.23)
The boundary condition at z = 0 and z = d is
(L’vw) ng =0 (6.24)
or in our case 91 /dn = 0. Taking this into account, we get B = 0 and
nw
k,=— 6.25
; (629)

where d is the plate thickness and n = 1,2, 3. .. is the number of half-waves of
1 (and, hence, of the field components) in z direction.

IHere and later on we omit the subscript at the vector k& component in the direction of propagation.
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FIGURE 6.3
Dispersion curves of magnetostatic waves in a normally magnetized metallized ferromag-
netic plate. My = 139 G, Hp = 3.9kOe, d = 10 um.

Substitution of (6.23) into (6.14) leads to
k2 = —pk?. (6.26)

As k%2 > 0, the propagating waves (k2 > 0) exist only if x < 0, i.e., in the
frequency range (6.6). Expression (6.26), together with (6.25) and the frequency
dependence of p (1.54), determine the dispersion relation w(k). It can be written
in the form
Wi

w?= WH (wH + me) (6.27)
where Z, = nz. In the limiting case of kd — 0o, (6.27) transforms into the
dispersion relation (6.5) for 6 = 7 /2. For finite & values, unlike the unbounded
medium, w depends on k, and the group velocity vy = Ow/0k # 0.

In the considered case, w increases with the growth of & (Figure 6.3) and
vgr > 0. Such waves are called forward waves. The expression for vy is
obtained by differentiating (6.27). It follows from this expression, as well as from
Figure 6.3, that vy passes through a maximum at a value of k near nw/d. The
maximal v, values are of the order of

YMod

(Ver) pax ~ ma (6.28)

For a YIG film (d = 10 pm, 1 = 1), (vgr)max ~ 2.5 x 10.
The components of the magnetic field h and magnetization m = ¥ h are found
easily from 1) = Acos k,z exp(—iky). The electric field e can be found, in the first
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approximation, from equations (6.3) and the boundary conditions e, = e, = 0
at z = 0,d. It turns out that, if k,k, <« ko (which is the condition for the
magnetostatic approximation to be valid), e is small as compared to h.

Consider now, following Bar’yakhtar and Kaganov [39], a ferromagnetic plate
magnetized, as before, normally to its surface but not metallized. We have now
to ‘sew together’ the fields in three regions: z < 0,0 < z < d, and z > d, using
the boundary conditions at the interfaces between these regions. For the potential
inside the plate, the expression (6.23) is valid, and outside the plate

_ [ Cexp(ko.z—iky) 2<0
Yo = { Dexp(—ko,z —iky) z>d (6.29)

where ko, is real and positive. In the plate, (6.26) holds, and the substitution of
1o into the Laplace equation results in

K3, = k% (6.30)

To satisfy the boundary conditions (6.12) it is necessary, in this case, to take
¥ = o and OY /32 = Op/dz at z = 0,d. This leads to a system of linear
equations for the coefficients A, B, C, and D. Equating to zero the determinant of
the system and taking into account (6.26) and (6.30), we obtain the transcendental
equation

27Zkd
tan Z = 72~ (ki) (6.31)
where Z = k,d = /—pkd.

Equation (6.31) has an infinite number of roots Z,, (n = 1,2, 3, .. .) correspond-
ing to different modes. These roots can be found by numerical or graphical (Fig-
ure 6.4) methods. Then, taking into account the frequency dependence of p, we
obtain the dispersion relation w(k). It can be written, as before, in the form (6.27),
but the quantities Z,, depend now on kd. The frequency range remains the same
as for the metallized plate, the w vs k curves are like those shown in Figure 6.3,
and the estimate (6.28) is valid.

In the case of a tangentially magnetized plate (Figure 6.5), the potential in the
plate can be written as

¥ = (Acosk,x + Bsink,z)exp (—ikyy — ik.z) . (6.32)
Substituting it into equation (6.14), we get
—p(k2+ k) =k (6.33)

Consider, for simplicity, a metallized plate. The boundary condition (6.24) leads
now to

p— +ipg,—— =0 (6.34)
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FIGURE 6.4
Graphical solution of equation (6.31) for a free normally magnetized plate. kd = 4. Full
circles represent Z,, values for a metallized plate.

atz = 0 and z = d. Being applied to (6.33), these conditions result in a system
of equations for the coefficients A and B. Setting the determinant of this system
equal to zero, we find

(W2k2 + pZk2) sinkod = 0. (6.35)

As we limit ourselves, for the present, to the volume waves (with trigonometric
dependence of the potential in the plate on the coordinate in the direction normal
to the plate), we assume k, in (6.35) to be real. Then, it follows from (6.35) that

kxd=nm=X,. (6.36)

Substituting (6.36) into (6.33) and taking into account the frequency dependence
of 1, we obtain the dispersion relation

WM WM
w=wy | wy + T ks | SWH (“"H + 1 cos? 8 )
+ matxT t T+ X (R

(6.37)
where k2 = ki + k2 and 6, is the angle between the direction of magnetization
and the direction of propagation (Figure 6.5).

The dispersion curves, calculated by formula (6.37), are plotted in Figure 6.5.
One can see that, for 6, = /2, the frequency does not depend on k. In the
other limiting case of §; = 0, i.e., when the wave propagates along My, w lies
in the range (6.6) and decreases with growing k, i.e., vy, is negative. This means
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FIGURE 6.5
Dispersion curves of volume magnetostatic waves in a tangentially magnetized metallized
plate. My =90 G, Hy = 1.35kOe, d = 10 um.

that the group velocity vector vy, = Ow/0k is antiparallel to the vector k and
to the phase velocity vpn = kw/ k?. Such waves are called backward waves. If
8i # 0,7 /2, the dependence of w on k = (k2 + k2)!/? is also a decreasing one
(Figure 6.5), but the angle between group and phase velocities is neither equal to
zero nor to 7. This is the consequence of the anisotropy in the yz plane due to
magnetization in the z direction. The direction of vy is usually determined by
the exciting conductor (antenna), and the direction of v, depends on the direction
and value of the steady magnetic field and on w.

We will not consider the problem of magnetostatic volume wave propagation
in a free (nonmetallized) tangentially magnetized plate, which was treated in
detail by Damon and Eshbach [82]. We note only that the frequency range and
the character of the dependence of w on k, and k. remain the same as for the
metallized plate. Formula (6.37) also remains valid, but the quantities X,, depend
now on k, and k.

6.2.2 Surface waves

We have considered as yet only such solutions of equation (6.14) (corresponding
to the volume waves) for which the dependence of ¥ inside the ferromagnetic plate
on the coordinate ¢ in the direction of the normal to the plate surface is represented
by trigonometric functions. However, there exist solutions with k% < 0, for which
the dependence of ¥ on ( is represented by hyperbolic functions not only outside
the ferromagnet but also inside it. Waves corresponding to such solutions are
called surface waves.

For surface waves, the simpler problem of wave propagation along an interface
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FIGURE 6.6
Surface wave at the boundary of a ferromagnet with metal or dielectric.

of half-infinite ferromagnet and half-infinite dielectric (or metal) is also meaning-
ful. Gintsburg [141] was the first to study this problem. Consider a half-infinite
ferromagnet magnetized tangentially to its surface and a wave propagating parallel
to the surface and normally to the direction of magnetization (8 = pp = 7/2in
Figure 6.6). Consider first the propagation along the interface of the ferromagnet
with perfect metal. The potential can be written in the form i) = A exp(—kz—iky)
where « is real and positive, and

k= si|k|. (6.38)

Here, sy = +1 where the upper sign corresponds to the propagation in the
positive direction, and the lower sign corresponds to the propagation in the negative
direction of the y axis.

Substituting 9 into equation (6.14), we get

p (k2= k%) =0. (6.39)
The boundary condition (6.24) leads to
uK = pok. (6.40)
It follows from (6.39) that either
Kk = |k| (6.41)

or u = 0. The latter case is of no interest because then, according to (6.40), k = 0.

Note that, according to (1.54), u, changes the sign if the direction of Mj is
changed from positive, with respect to the z axis [what was assumed in deriv-
ing (1.54)], to negative. Hence, we may write

Lo = flaSM (6.42)
where ji, is defined according to (1.54), and sy = 1 if My = zoM,, and
sm = —1if My = —zoM,. Substituting (6.38) and (6.42) into (6.40) and
taking (6.41) into account, we get

L. SMSk = S. (6.43)

Ia
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It follows from (1.49) or from Figure 1.5 that the ratio /1, is never equal to +1
and is equal to —1 at

w=wH t+wpp. (6.44)

Thus, the frequency of a surface nonexchange magnetostatic wave, propagating
along the boundary of a ferromagnet with metal, is independent of & and lies
above the range (6.6). The direction of propagation is determined by the condition

s = —1. It is easy to make sure that this condition is equivalent to the condition
k « Mo (6.45)
—_— = n, .
k07T My

where ny is a unit normal to the boundary directed into the ferromagnet.

Consider now the wave propagating along the boundary of a ferromagnet and
a dielectric. The potential in the ferromagnet (z > 0) is written as before, and
expression (6.39) holds. In the dielectric (z < 0), ¢ = Cexp(koz — iky).
Substituting 1 into the Laplace equation, we find k3 = k2. So,

ko = Kk = |k} (6.46)
From the boundary conditions (6.12) at z = 0, it follows that A = C' and
Ko + pKk = pok. (6.47)
Taking into account (6.46), (6.38), and (6.42), we obtain from (6.47)

1
tu = SpSk = 8. (6.48)
ba
It is easy to make sure that (6.48) is satisfied only for s = —1, and
1
w=wy + EwM' (6.49)

Thus, the surface wave propagating along the boundary with a dielectric is char-
acterized by the same nonreciprocity as the wave at the boundary with metal. Its
frequency also lies above the frequency range of volume waves but nearer to the
upper limit of this range.

Eshbach and Damon [112] studied surface waves at the boundary ferromagnet-
dielectric for arbitrary directions of magnetization and propagation (Figure 6.6).
It was shown that the waves exist if

w
sinf s sinps > " (6.50)
wy +wpm
and their frequencies are determined by a very simple formula:
1 . .
w= - - wH + Wn sinf s sin @y . (6.51)
2 sinfy sinpps 2

Expression (6.49) is a particular case of (6.51).
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FIGURE 6.7
Dispersion curves for surface waves in a free ferromagnetic plate. My = 139 G, H =
1.25 kOe.

Passing to the surface waves in plates, we limit ourselves to the simplest but very
important case of a wave propagating normally to the direction of magnetization
in a tangentially magnetized plate. Such a wave in a metallized plate is of no
interest because its frequency does not depend on £, and we consider a free plate
(Figure 6.7). This problem was studied by Damon and Eshbach [82].

The potential inside the plate can be written in the form

¥ = [Aexp(—kz) + Bexp(kz — rd)] exp(—iky) (6.52)

and outside the plate

bo = { C exp(koz — iky) <0 (6.53)

D exp(—koz + kod — iky) = >d.

Expression (6.46) holds as before, and a system of equations for the coefficients
A, B, C, and D follows from the boundary conditions. Equating its determinant
to zero, we obtain
pak? — (kp + Ko)?
pak? — (kp — Ko)?
Taking into account (6.46) and dependences (1.54) of 4 and 1, on w, wyy, and
wp, we find the dispersion relation

= exp(—2«d). (6.54)

W= (wH + ci')ﬂ)z - (L‘%’I—)?exp(—de). (6.55)

As it should be expected from the symmetry considerations, the frequency does
not depend on the directions of My and k. It depends on k (Figure 6.7) and lies
in the range

1
wi <w<wyg+ Ew,w. (6.56)
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Regions of existence of nonexchange magnetostatic waves in a free ferromagnetic plate.
7 is a unit normal to the plate surface.

This range adjoins the range (6.6), in which the frequencies of the volume waves
lie (Figure 6.8). The group velocity of the considered surface wave is positive.
This is in accordance with the general rule that magnetostatic waves, propagating
normally to the direction of magnetization, are forward waves, and waves, propa-
gating along this direction, are backward waves. The value of the group velocity
is easily found by differentiating (6.55):

2
Vg = dj—f exp(—2kd). (6.57)

In contrast to volume waves, this quantity decreases monotonically with growing k.

Having solved the system of equations for the coefficients A, B, C, and D, we
find the potentials 1 and v and can calculate the magnetic field h = V1), the
magnetization m = % h, and, in the first approximation, the electric field e. We
cite here only some qualitative results of these calculations. The potentials and all
field components turn out to be nonreciprocal, i.e., their coordinate dependences
change with the reversal of M or k (Figure 6.9). The fields and magnetization
‘press themselves’ to one of the plate surfaces, depending on the direction of the
M x k vector (oron the sign of s = s 5k ). The magnetic field and magnetization
inside the plate are elliptically polarized. The magnetic field outside the plate
is circularly polarized, the directions of polarization rotation being opposite at
opposite sides of the plate. The electric field is linearly polarized in z direction.

Seshadri [358] studied a more complicated case when a tangentially magnetized
ferromagnetic plate adjoins metal at one side (x = 0) and air at the other side
(z = d). The dispersion relation for the surface wave, in this case, has the form

(1 D Sl A P = exp(—2kd). (6.58)

wH +wpy — Sw
wMm WM

wWH +wpm + sw

In contrast to (6.55), s appears in this expression, i.e., the dispersion relation is
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Potential, field, and magnetization patterns for a surface magnetostatic wave in a tangen-
tially magnetized plate. Mo = 139 G, Hy = 1.25kOe, 4 = 10 um. Solid and dashed lines
correspond to different directions of propagation.

nonreciprocal. If s = 1, the frequency lies in the range
w1 Kw<lwy+wy. (6.59)

When kd — o0, it approaches the frequency (6.44) of the wave propagating along
the boundary of ferromagnet with metal. If s = —1, the frequency lies in the
range (6.56) and approaches, when kd — oo, the frequency (6.49) of the wave
propagating along the boundary of a ferromagnet and a dielectric. The curves w
vs k for both values of s are plotted in Figure 6.10(c).

The dispersion relations of surface waves have been calculated, as well, for
the structures shown in Figure 6.10(d),(e) [58, 457]. An interesting feature of
these structures is the nonmonotonical dependence w(k) for s = 1: the wave is
forward at small k values and is backward at large k values. Volume and surface
waves in some other structures were also investigated (e.g., [8]). By varying the
thicknesses and the magnetizations of the layers it is possible to approach the
required dispersion relations, in particular, with approximately constant vgr (for
broadband delay lines) or with linear dependence vg(w) (for pulse-compression
devices [4]).

6.2.3 Magnetostatic waves in waveguides with finite cross section

The existence of slow electromagnetic waves in ferrite-loaded waveguides with
small cross section was first demonstrated theoretically by Seidel [356]. His,
rather complicated, analysis was based on full Maxwell’s equations. But if the
waves are regarded from the very beginning as magnetostatic, such problems can
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Frequencies of surface magnetostatic waves in different structures containing a tangentially
magnetized ferrite plate. Solid lines and dashed lines correspond to s = 1 and s = —1,

respectively. Curves w(k) relate to t = t; = 2d, t2 = 5d.

be solved easily. In the case of a metallized rectangular ferrite rod, the solution
was carried out by Auld and Mechta [27].
The magnetostatic potential can be written as

Y = (Ag cosk,x + By sink,z) (A, cosk,z + B, sink,z)exp(—iky). (6.60)

Substituting this into the Walker equation (6.14), we get

—u (kX + k%) =K. (6.61)

The boundary conditions at z = 0 and z = b (Figure 5.4) lead to
B,=0 kz=¥ (m=1,2,3..). (6.62)
There are two possibilities to satisfy the boundary conditionsat z = 0 and z = a:

sfiok nw
Bx:”:l:z Ae ko= — (n=1,2,3...) (6.63)
. . skiig
B, =iA; ke, = iK; Ky = . (6.64)
n

The first possibility corresponds to volume waves. Then, from (6.61)-(6.63)
and the frequency dependence of p, it follows:

7 /b)? -!
Wi +wum (1 + #{-ﬁ) ] . (6.65)

w? =wy

The second possibility corresponds to waves with hyperbolic  dependence and
trigonometric z dependence. In this case, (6.61) transforms into k2 = —u, k?,
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and, taking (1.60) into account, we get

M
oﬂ = (WH +LL)M) (LUH + m}w) . (666)
The dispersion relations (6.65) and (6.66) are reciprocal, but the potentials and,
hence, the field structures are nonreciprocal, as one can see from (6.63) and (6.64).
Both waves are forward, as would be expected because the direction of propagation
is normal to M.
The problem of magnetostatic-wave propagation in a longitudinally magnetized
round rod can also be solved rigorously. We must now use cylindrical coordinates
(Figure 5.1), in which equation (6.11) takes the form

%y 10y 1 0% )
b =—— | - — = 0. 6.67
”(302 p8p+p23¢2) 52 =0 (667
Consider, for simplicity, a metallized rod. Note that it is the same problem as

in Section 5.1 but solved now in the magnetostatic approximation. The solution
of (6.67) can be written in the form

¥ = I (kp)exp(imyp — ikz) (6.68)

where J,,, is the Bessel function and m = 0, £1, 42, . ... The boundary condition
oy . 10y

Y o ipe-X o0 atp= 6.69

I3 B +ip 53 at p = po (6.69)

follows from (6.24). Substituting (6.68) into (6.67), we find k? = —pux?, and it
follows from (6.69):

XIn(X) _ Ha

Jm (X) 7

where X = kpp, and prime denotes the differentiation with respect to X. This

equation is much simpler than equation (5.4), which was obtained without using

the magnetostatic approximation. Taking into account the frequency dependence
of 1 and p,, we find from (6.70) the dispersion relation

(6.70)

2 _ WM
= (o + ) (e
where X,,,,(w) is the nth root of (6.70).

If m = 0, equation (6.70) becomes J;(X) = 0 and has only real roots inde-
pendent of w, which correspond to volume waves. Formula (6.71) gives, in this
case, the explicit dependence w(k) (Figure 6.11). If m # 0, equation (6.70) has,
at each |m/, an infinite number of real roots, which depend on frequency and the
sign of mM,, i.e., on the direction of polarization rotation with respect to the
direction of the steady magnetization. For the left-hand rotation, equation (6.70)
has imaginary roots, too, one root at each value of |m/|. These roots correspond to
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FIGURE 6.11
Dispersion characteristics of magnetostatic waves in a round metal waveguide filled with
longitudinally magnetized ferrite. Mo = 200 G, Ho = 1.35 kOe.

surface waves (Figure 6.11). One can see from the figure that, in accordance with
the above-mentioned rule, all waves are backward.

The magnetostatic waves in a nonmetallized rod were investigated by Joseph
and Schlémann [192]. The volume-wave dispersion characteristics, in this case,
do not differ qualitatively from the dispersion characteristics in a metallized rod.
However, the surface waves exist in a smaller range (6.56).

Magnetostatic waves in ferrite films of finite width are of certain interest from
the practical point of view. Such films can be regarded as rectangular rods. But
the problem of wave propagation in a free (nonmetallized) rectangular rod has
no strict analytical solution. To solve it approximately the method of ‘magnetic
walls’ can be used. According to this method, we exclude the regions z < 0 and
z > w (Figure 6.12) from consideration and assume fictitious boundary conditions
(1h)ng at the planes z = 0 and z = w. At the surfaces ¢ = 0 and z = d, the
real boundary conditions are to be satisfied. Such problem has a simple solution,
which is a good approximation if the dimension in the direction normal to the
‘magnetic walls’ (w in Figure 6.12) is much larger than another dimension (d).

Consider, e.g., a surface wave. The potential can be written as
=1, (Fcosk,z+ Gsink,z) (6.72)

where 9, has the form (6.52) inside the plate and the form (6.53) outside it. The
boundary conditions at z = 0 and z = d lead to (6.54), and from the boundary
conditions at the magnetic walls z = 0 and z = w it follows that ' = 0 and

k, = — (n=1,2,3,...). (6.73)
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Tangentially magnetized ferromagnetic plate of finite width.

Substituting (6.72) into the Walker equation (6.14), we get, instead of (6.39),
p(s? — k%) — k2 = 0. (6.74)

From the Laplace equation for the potential outside the plate, it follows that
K3 — k> — k2 =0. (6.75)

Expressions (6.54) and (6.73)—(6.75), together with the dependence of p and p,
on w, determine the dispersion relation. It differs essentially from the dispersion
relation in an infinite film only for small values of kw.

Using the method of magnetic walls, O’Keefe and Patterson [303] considered
a more complicated structure, shown in Figure 6.10(d). Some interesting features
were found, in particular, the existence of a volume wave in a certain frequency
range below w .

6.2.4 Energy flow and losses

Let us limit ourselves to magnetostatic waves in plane structures, which are of
most practical interest. Consider a structure (Figure 6.13) consisting of N ferrite
and dielectric layers and suppose that v, and vy, are both directed along the 7
axis. Then, the energy flow in this direction, related to the unit length of the
structure in the £ direction, is

N
PO =Y [ Mie 0 (676)
j=170)

where II; is the mean value of the Pointing vector (4.67), and integration is over
the thickness of each layer of the structure. The electric field, needed to calculate
I1;,, can be found using equations (6.3). If there is no dependence on ¢, it follows
from (6.3):

ko

e¢ = — b (6.77)
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FIGURE 6.13
A planar structure.

and, as hy = 0, we obtain
C *\ _ w « [
II, = —S—WRe (esh() = —87rkRe [hc (uh)(] . (6.78)

As a simple example, consider a volume wave in a normally magnetized met-
allized plate (Figure 6.3). Then,

P = / I,dz = lé “;cd h? ox- (6.79)
The energy flow for a wave in a free (nonmetallized) plate is to be found by
summing in (6.76) the integrals over three regions: the plate and two dielectric
half-spaces. The energy flows in different regions may have different signs, but
the total flow, of course, is in the direction of group velocity.

The losses of magnetostatic waves have the following sources: magnetic losses
determined by anti-Hermitian parts of n components (Section 4.4); electric losses
determined by imaginary parts of ¢ in ferrite and dielectric layers; losses in
metallic layers; electromagnetic radiation (if the structure is not entirely screened);
excitation of other types of waves in the structure, first of all, of the elastic waves.

The first source is, usually, the most important. To find its contribution we can
use the above-discussed dispersion relation assuming & and p, in these relations
to be complex. If the dispersion relation is written in the form F(w,ws,k) = 0
(as, e.g., relations (6.27), (6.37), or (6.55)], then it is sufficient to make the
replacement (1.68). Solving the obtained complex equation, we can get k =
k' — ik”. If the losses are small, we can expand F(w,wy + iow, k' — ik") in
power series in iaw and (—ik"). Equating to zero the sum of linear terms in these
series, we obtain

E'=o——. (6.80)

The quantity w, can be introduced which characterizes the attenuation of the
wave per unit time of propagation. If we turn, in the factor exp(iwt — ik'y — k"y),
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Transducers used to excite and receive magnetostatic waves in ferrite films. Microstrip
transducers: (a) single microstrip, (b) lattice, (c) meander. Coplanar transducers: (d) sym-
metric, () nonsymmetric, (f) slot-line.

to the coordinate system moving in the direction of the wave propagation with the
velocity vgr, we see that in the new system the attenuation is determined by the
factor exp(—w;t) where

Ow

wr = Vgk” = aw——. (6.81)

wH
Comparing this expression with (6.7), we make sure that w, coincides with the
decrement w" of oscillations (when k” = 0). For the surface wave in a free
(nonmetallized) film, it follows from (6.81) and (6.55) that

1
wr =« (wH + sz) . (6.82)

6.2.5 Magnetostatic waves in ferrite films: excitation, applications

To excite magnetostatic waves in ferrite films (usually, YIG epitaxial films on GGG
substrates) thin metal conductors, placed at or near the film surface, are used. The
simplest exciting element (transducer or ‘antenna’) is a straight microstrip or
wire conductor (Figure 6.14). Because of relation (6.1), the wave front of the
excited wave is approximately parallel to the conductor, i.e., k and v, vectors
are perpendicular to it. If the field structure of the wave is reciprocal, waves
propagating in both directions have equal amplitudes. But if the field structure
is nonreciprocal, the amplitude is larger in the direction for which the fields have
greater values at the surface where the transducer 1s placed.

As the first approximation, the problem of wave excitation by given currents can
be treated. Such problems were solved by Ganguly and Webb [134], Emtage [108],
Kalinikos (see references in [205]), and by others. In reality, the currents in the
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transducers are not given and should be found together with the amplitudes of the
excited waves. Such self-consistent theories were worked out by Vugalter and
Makhalin [431] and Gilinskii and Shcheglov [137].

The main result of all theories of magnetostatic-wave excitation is that the
amplitude of the wave with a certain k value is proportional to the kth space
Fourier harmonic of the current.

A comparatively simple problem (which can be used as a starting point in more
complicated cases) is the problem of magnetostatic-wave excitation by a linear
current I at the surface of the film. The solution of this problem can be written in
the form

h(n,¢) = CIR*(n,() (6.83)

where h(n, ¢) is the complex amplitude of the magnetic field of the excited wave,
h°(n, () is the normalized magnetic-field eigenfunction, and C is the complex
quantity found by solving the problem; it is assumed that 3/9¢ = 0 where £ is
the coordinate in the direction of the current.

Consider now a transducer consisting of N parallel linear conductors with
currents I; = |I;] exp(i;), which are situated at distances I, from a certain point.
Then,

N
h = Ch® Y |I;| exp(ip; + ikl;). (6.84)

J=1

In the particular case of equal (|I;| = const = I) and cophased (p; = 0) currents
at equal distances 6! from each other, we get h = CI1Fy h® where ‘the structural
factor’

sin(k 6l N/2)

An analogous expression can be obtained for the antiphased currents (¢; —
@j—1 = ). The transducer (b) in Figure 6.13 can be regarded as cophased, and
transducers (c), (d), and (e), as antiphased.

Expression (6.85) can be used to find the dependence of the intensity of excita-
tion on the width b of the conductor. Assuming the uniform current distribution
over the width of the conductor, we regard the conductor as a system of N equal
cophased currents I /N at distances b/N. At N — oo we get

B _sin(kb/2)
CO)=COR  F=—Gp=

(6.86)
According to (6.86), the decrease of the excitation intensity with increasing b
becomes essential at b > 7 /(2k). This estimate can be used, notwithstanding that
the current distribution over the conductor width is far from uniform.

The power flow of the excited wave, related to a unit length of the transducer,
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can be written in the form
_ 1 1__ 1
P‘ = P1+ + Pl = ER?—radIIIZ + ieradlIIZ = ERl fﬂdlllz (6~87)

where I is the complex amplitude of the transducer current, indices + and —
correspond to the waves propagating in opposite directions, and R}, Ry,
and R4 are the radiation resistances. For the complete calculation of the
magnetostatic-wave excitation, we have to find the current distribution along the
transducer. The theory of transmission lines with losses (e.g., [191]) can be used
for this purpose. The radiation resistance R; g is the main part of the distributed
resistance, one of the four distributed parameters of such lines. It was shown [428]
that the theory of transmission lines with losses can be applied to the receiving
transducer, as well.

In conclusion, we list the main distinctive features of magnetostatic waves in
films.

1. Broad frequency range (~ 1—50 GHz) limited from above only by the high
values of the steady magnetic field, and from below, by the rise of domains.

2. Possibility of tuning by variation of the steady magnetic field.

3. The range of wave numbers (~ 10—10* cm~’) independent of frequency and
convenient for applications.

4. Low group velocity controllable by the steady magnetic field.

5. Possibility to change the dispersion law by simple means, e.g., by the choice of
the wave type and the thickness of layers.

6. Comparatively low propagation losses.

7. Effective excitation by transducers of simple design.

These features result in broad application possibilities of magnetostatic waves
in designing miniature controllable and nonreciprocal microwave devices. Among
them there are delay lines, filters, resonators (e.g., (3, 189, 5}), as well as nonlinear
devices (Section 10.5).

6.3 Magnetostatic oscillations (Walker’s modes)

In ferromagnetic or ferrimagnetic samples of finite dimensions, magnetization os-
cillations with discrete eigenfrequencies should take place. In this section we will
study these oscillations in the magnetostatic approximation. The uniform mode
of such oscillations was already considered in this approximation in Section 1.5.
Nonuniform oscillations were observed, as it became clear afterwards, in early
ferromagnetic-resonance experiments as subsidiary maxima superimposed on the
main resonance curve. White and Solt [439] and Dillon [93] were the first to
resolve these maxima and give a qualitative explanation of them. The rigorous
theory was worked out by Walker [432] (see also [433]) for the case of an ellipsoid
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of revolution (spheroid). We will cite the main results of this theory below, after
considering simpler examples.

6.3.1 Metallized cylinder

Consider a ‘waveguide’ resonator (Section 5.3) obtained from a round metallized
ferrite rod magnetized in the direction of its axis (Figure 6.15). As the electric-
field structure and the propagation constant k of this waveguide are both reciprocal
(Sections 6.2), the eigenfrequencies of the resonator are determined by expres-
sion (5.34). Substituting it into the dispersion relation (6.71), we get the equation
for the eigenfrequencies

W= wp oy +w 1+ﬂ(£9)2]_1 (6.88)
S D RN PR '

where X, »(w) are the roots of (6.70), m = 0, £1,%£2,...,n =1,2,3,.. ., and
p = 1,2,3,.... One can see from (6.88) that the eigenfrequencies depend on
the ratio of the resonator dimensions and on three integral numbers m, n, and p,
which characterize the oscillation mode. The range in which the eigenfrequencies
lie is the same as for propagating waves, both volume and surface:

wg <w<wH+wpm. (6.89)

If the cylindrical surface is not metallized, the frequency range would be

1
wyg <w <wH+§wM. (6.90)

(In this case the plane metal surfaces must be assumed to be infinite in order for
the problem to have a rigorous solution).
The components of h = Vi) and m = X b can be found from the potential

¥ = I (kp) exp(—imep) cos k., 2 (6.91)

where k, = wp/l. It should be noted that by taking into account the boundary
conditions for the potential (6.91), we can find expression (6.88) without using
the dispersion relation for the propagating wave.

6.3.2 Sphere and ellipsoid of revolution

The problem of magnetostatic oscillations in a sphere is of great interest because
spherical ferrite samples are widely used for ferromagnetic-resonance experiments
and in microwave ferrite devices, especially in ferrite filters (Section 5.3). The
magnetostatic oscillations in a sphere can be treated as a particular case of such
oscillations in an ellipsoid of revolution (spheroid) analyzed by Walker [432].
However, some mathematical difficulties, arising in this way, make an indepen-
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Magnetostatic ferrite resonators: (a) metallized cylinder, (b) sphere.

dent solution of the problem for a sphere more expedient. Such a solution was
performed by Fletcher and Bell [119].

Consider a sphere (Figure 6.15) of an isotropic nonconducting ferromagnet
magnetized to saturation. We must find the solutions of the Walker equation (6.14)
for the potential 1 inside the sphere and of the Laplace equation for the potential
1o outside it and satisfy the boundary conditions (6.12) at the sphere surface.
These conditions lead to

b = o (ﬁvw) o = % atr =R (6.92)
where 7 is a unit vector directed along the radius. To satisfy the boundary
conditions the solutions for ¢ and ¢ should be found in a coordinate system in
which the surface r = R is a coordinate surface. The spherical coordinate system
1, 8, ¢ is, of course, such a system, and the solution of Laplace’s equation in this
system has the form [293]

Yo = r~ ("D PIml(cos 0) exp(—imep) (6.93)

where P,llm' is the first-kind associated Legendre functions [273],n = 1,2,3,.. .,
andm =0,%1,%2,...,4n.

However, the solution of Walker’s equation cannot be obtained in spherical
coordinates. Therefore, more complicated coordinates &, 7, ¢ were introduced
in [119], which are related to the Cartesian coordinates in the following way:

T =/ — 1R\/£2 — 1 siny cosp
y=1+vp— 1R\/E% — 1 siny siny
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fpn—1
z= I'LTRg cos7. (6.94)

The solution of (6.14) in these coordinates, finite at 7 = 0, is
y = PI™(&)PI™ (cos ) exp(—imep). (6.95)

The sphere surface r = R is the coordinate surface { = {r where

€r = ,/——”’i - (6.96)

Substitution of (6.93) and (6.95) into the boundary conditions (6.92) yields the
equation

[P'r!Lml(éR)],
Pi™(¢R)

where the prime denotes the differentiation with respect to the argument. This
equation and the frequency dependences of y and 1, determine the eigenfrequen-
cies of magnetostatic oscillations in a sphere.

As it should be expected, the eigenfrequencies do not depend on R. They
depend on wy, war, and on three integers n, m, and 7. The integer 7 characterizes
the number of the root of equation (6.97); by tradition, the number of the root is
(r+ 1)if m > 0 and is 7 if m < 0. Therefore the quantity of roots is equal to
(Fmax + 1) at m > 0 and is equal to Tmax at m < 0. The analysis of (6.97) shows
that 7may is equal to the integral part of (n — |m|)/2 [119].

The components of h = Vi and m = X h can be determined, for each mode,
from (6.95). Positive and negative m values correspond, respectively, to the right-
hand and to the left-hand rotation of the entire k and m pattern around the My
direction. The local polarization of h and m is, in general, elliptic and different
at different points of the sphere.

Consider first the case of n = |m/|. Equation (6.97) transforms then into

éR +n—14pm=0 (6.97)

_|m|+1
Im|

m
©+ l—m—lua = (6.98)

It is easy to make sure, taking (1.54) into account, that equation (6.98) can be
satisfied only if m > 0. It has then, for each m value, only one root

m 4Tt m — 1
om0 = = ~H, ————— M. 6.99
Wm0 = wH + 5mwm = vHeo + 55— Mo (6.99)
The potential in this case is
Y = p™exp(—imy) = (z —iy)™ (6.100)

where p = /x? + y2. The magnetization components are

m-1 —

me = imy = (z — iy) = p™ 'exp [—i(m - 1)¢] . (6.101)
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The magnetization has, for these modes, the right-hand circular polarization at all
points, and its amplitude increases with growing distance from the z axis. In the
simplest case of n = m = 1 the magnetization does not depend on coordinates,
and the frequency is equal to v H,o. This mode (1,1,0) is the uniform mode studied
in detail in Section 1.5.

For the family of modes with n = m + 1, it follows from (6.97):

m |m| + 3
Bt s—le = ——~

T T (6.102)

This equation is also satisfied only if m > 0 and has, for each m, one root

H+ %%WM = vyH.o + 7?31%M0. (6.103)
The potential and the magnetization components, for this family, gain an additional
factor z, as compared with (6.100) and (6.101), so that the magnetization is equal
to zero at the equatorial plane. The polarization is circular with right-hand rotation
at every point, as for the family (m, m, 0).

One can see from (6.99) and (6.103) that, for both considered families, the
differences w — yHe ¢ are proportional to My and do not depend on H,q. This
feature, as well as the circular polarization of h and m, takes place only for the
modes (m, m,0) and (m + 1, m,0).

The frequencies and magnetization components can also be easily found for the
modes with . = 0. In this case, (6.97) takes the form

P(¢r) _
RPn({R)

where P, () are the Legendre polynomials [273]. This equation has no roots for
n=1.1Ifn =2, then Py(§) = (3¢2 — 1)/2, the root of (6.104) is €% = 1/5, and

Wm41,m,0 = W

£ —(n+1) (6.104)

2 4
w2,0,1 =wy |wy + gb«‘M . (6105)

The magnetization components for the mode (2,0,1) are
Mg = XT + iXay My = —iXeT + XY. (6.106)

The magnetization is now elliptically polarized, and the difference w — vH,g
depends on Heo, as for all magnetostatic modes of a sphere except the families
(m,m,0)and (m + 1, m, 0).

The calculated field and magnetization components and the eigenfrequencies
for all magnetostatic modes of a sphere with n < S are given in [119]. The field
dependences of the frequencies for some modes are shown in Figure 6.16. One can
see in this figure the numerous degenerations of modes: ‘accidental’ intersections
of w vs He curves, as well as the entire coincidence of the frequencies of modes
(m, m, 0) and 3m + 1, 3m, 0). The eigenfrequencies of all magnetostatic
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FIGURE 6.16
Eigenfrequencies of magnetostatic oscillations of a sphere versus external static magnetic
field [119). Dashed lines indicate the limits of the entire magnetostatic-mode spectrum.

modes of a sphere lie in the range (6.90) [119]. Hence, the resonance H. ¢ values
at constant frequency are in the limits
w 27

4
—’; - ——3—Mo < Hep < %) + —37[M0. (6.107)

It is worth noting that the measurement of differences between the frequencies
of two magnetostatic modes from (m, m, 0) or (m + 1, m, 0) families is a precise
and convenient method to determine the steady magnetization M.

Let us now cite some results concerning magnetostatic modes of an ellipsoid of
revolution (spheroid) magnetized along the axis of revolution [432]. The setting
up of the problem and the assumptions are the same as in the case of a sphere.
Many properties of magnetostatic oscillations, mentioned above for a sphere, take
place for a spheroid, as well.

In particular, the rule for determining the quantity of modes with given m
and n remains the same as for a sphere. For the mode families (m,m, 0) and
(m + 1, m, 0), the difference w — wy is independent of wy and the magnetization
is circularly polarized.

The frequencies of all magnetostatic modes of a spheroid (with semiaxes a
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FIGURE 6.17

Dependence of the magnetostatic-mode frequencies of an ellipsoid of revolution on the
ratio of ellipsoid axes [432]. Note that H) is the internal field.

and c) lie in the same range (6.90) where now wy = yHg — YN, My. At
a/c = a — 0 (when the spheroid transforms into an infinitely thin disc), the
mode spectrum turns into a point w = wy = Y(Heo — 47Mp). Ata — o0
(infinitely thin cylinder) it turns into a pointw = wg + wm /2 = Y(Heo + 27 Mp)
(Figure 6.17).

6.3.3 Damping, excitation, and coupling

To take the damping of magnetostatic oscillations into account we have to sub-
stitute the complex p and p, values into the characteristic equations, e.g., (6.97).
The imaginary parts w! of the roots of these equations represent the damping.
It appears that the quality factors of nonuniform magnetostatic oscillations differ
little from the quality factor of the uniform mode.

The magnetostatic oscillations in small samples usually are excited by the
electromagnetic fields of resonators or waveguides in which the samples are placed.
In the theory of such excitation the following orthogonality relations [318] are
used:

/ m,(r) x m,(r)dV =0
v
/ m”(r)m;’(r) = DA,
v
/ m,(r) x m},(r)dV = izgDA,,. (6.108)
v

Here v and v’ are the joint mode indices including n, m, and r; m,, (r) and m, (7)
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are the normalized magnetizations of different modes, D is the normalization
constant; the integration is over the volume of the sample; A, is the Kronecker
delta-symbol (Appendix C); and 2 is a unit vector directed along Mp.

As the functions m,(r) make up a full system, the magnetization of forced
oscillations can be written in the form

m(r) = ZC,,m,,('r). (6.109)

Taking the orthogonality relations (6.108) into account, we can obtain the follow-
ing expression for the coefficients C.,:

C. = Cut [y h(r)m}(r)dV

. 6.110
w? — w!? + 2iw! Wl (6.110)

where h(r) is the given field and C is a constant depending on the normalization
of eigenfunctions m,, ().

According to (6.110), the coefficients C,, change in a resonance manner with
varying w or Heo. And if w! is sufficiently small, the magnetostatic modes are
excited one after another as w or H, varies.

It is clear from (6.110) that the condition for excitation of a certain mode is that
the ‘excitation integral’ in the numerator of (6.110) should not be equal to zero.
If the field h(r) is uniform, this integral differs from zero only for the uniform
mode (1,1,0). To excite a nonuniform mode, a nonuniform field is needed. The
amplitude of the excited mode is greater the nearer the field pattern is to the
structure of the magnetization of the mode to be excited.

In reality, the nonuniform magnetostatic modes are often observed when the
excitation integral in (6.110) seems to be equal to zero. This is due sometimes
to the inaccuracy of the sample location or to the disturbance of the field by the
sample holder. But there are also more fundamental reasons of such ‘illegal’
excitation.

One of them is the influence of magnetocrystalline anisotropy. If My is directed
along the axis in a uniaxial crystal or along (100) or (111) axes in a cubic crystal,
then, according to the above-mentioned general theorem (Section 6.1), the entire
spectrum of H.¢ resonance values of the magnetostatic modes in a single-crystal
sample will be shifted by the quantity H” with respect to the spectrum in an
isotropic sample. However, the situation becomes much more complicated for an
arbitrary M, direction. In this case, the solutions of the magnetostatic equations
(the eigenmodes) are no more the Walker modes. But, if the anisotropy is not
very large, it is advisable to seek the solutions in the form of series in the Walker
modes. Krivchenkov and Pil’shchikov showed [235] that (for a sphere) only such
terms in these series are not equal to zero which correspond to the Walker modes
with the same parity (even or odd) of the n values and with the same parity of the
m values, relative to the n and m values of the initial mode.

Let us discuss the same problem in terms of coupled oscillations. We now
have to say that the anisotropy leads to the coupling of oscillations, which were
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independent (eigen) modes in an isotropic sample. The coupling results in the
frequency shift of the original mode and in the excitation of all modes that are
coupled with it. Near the points of degeneration [i.e., of crossing of the unper-
turbed curves w(H, o) of the coupled modes] the repulsion of these curves occurs
(e.g., [121]).

Returning to an isotropic medium, we remind the reader that Walker’s theory
is valid for a system with cylindrical symmetry in respect to the M, direction. If
this symmetry is broken (for an arbitrary ellipsoid or for an ellipsoid of revolution
but magnetized in an arbitrary direction), the situation is similar to the above-
considered situation in the case of an anisotropic medium. Any disturbances
of cylindrical symmetry, including macroscopic defects, as pores, clifts, and so
on, can be treated (in terms of coupled oscillations) as factors leading to the
coupling of Walker’s modes. This is the second reason of ‘illegal’ excitation of
the nonuniform magnetostatic oscillations.

The third reason is the finite sample dimensions. It was pointed out in Section 5.3
that, for a sphere with finite radius, the ‘retarding’ terms in Maxwell’s equations
(discarded in the zero magnetostatic approximation) result in the correction (5.41)
of the resonance field of the uniform mode. Similar corrections take place for the
nonuniform modes [318] but decrease with increasing n and m. The influence
of the ‘retarding’ terms is also the source of coupling of magnetostatic modes.
Sui Yangshen has shown [398] that the coupling appears, in this case, between
modes with the same parity of n and with the same m values.

According to Walker’s theory, the magnetostatic oscillations arise due to the res-
onance frequency dependence (1.54) of the 1z com ponents. This dependence takes
place for any magnetized isotropic substance. Therefore, nonuniform magneto-
static oscillations should be observed even in paramagnets, but the range (6.90) is
very narrow in this case at not very low temperatures.

However, neither the specific form (1.54) of the ﬁ components, nor the exis-
tence of the steady magnetization are the necessary conditions for the appearance
of nonuniform magnetostatic oscillations. They were observed [45] in a uni-
axial antiferromagnet in the antiparallel state (Section 3.2), in which the steady
magnetization is equal to zero.
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Spin waves

7.1 Spin waves in unbounded ferromagnet

In the preceding chapter, the waves of magnetization were considered in suchrange
of wave numbers k that the influence of exchange interaction on the dispersion
law could be ignored. Now we begin to study the waves with larger & values when
this interaction is to be taken into account. Such waves are usually referred to
as spin waves, although this term can be related, as well, to the waves studied in
Chapter 6.

In Section 7.1 we consider spin waves in an unbounded uniform ferromagnet
magnetized to saturation. We will use, as before, the continuum model describing
the ferromagnet by the magnetization M (7, t).

7.1.1 Energy and effective field of exchange interaction

The energy of exchange interaction in a ferromagnet can be represented by the
sum (2.11) of the uniform term Uexo and the nonuniform term Uex~.. The latter
is equal to the increase of the exchange energy due to the nonparallelism of
neighboring magnetic moments, i.e., to the dependence of M on coordinates.
This term can be written in the form [14]

Uex~n = : qu”%% (7.1)

where ¢, are the components of a tensor q. Using (2.7), we obtain from (2.12)
and (7.1) the effective field of the exchange interaction

- 3 3
Hex = Heo+ Hon =AM +) ) gy

p=1 s=1

M

T (12)

For an isotropic ferromagnet, A and g are scalars, Hexo transforms into (1 57,
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and H.,.. takes the form
H.. =qV’M. (7.3)

In this chapter we deal only with a ferromagnet magnetized to saturation, in
which My does not change quickly in space. Then, the field Hx.~. has only an
alternating component. Its complex amplitude in an isotropic ferromagnet is

hex = ¢Vim. (7.4)
The quantities D and 7 connected with g by the relations
n =D =yMoy (7.5)

are also used. All three quantities can be called the nonuniform exchange constants
or constants of spin stiffness.

7.1.2 Dispersion law

The dispersion relation for spin waves was obtained at first by Bloch [52] on the
microscopic model. This relation was generalized by Holstein and Primakoff [184]
(Section 7.4). On the macroscopic, continuum model, the spin-wave dispersion
law can be derived by two, quite equivalent, methods.

The first method is based on expression (6.4), which is valid regardless of
whether the exchange interaction is taken into account or not; only the form of
depends on that (dealing with a ferromagnet magnetized to saturation, we assume
uy = 1). To obtain the expression for x we must solve the equation of motion,
e.g., (2.18) with the effective field (7.4). For a plane wave, m = mg exp(—ikr),
h = hgexp(—ikr), and it follows from (7.4):

hex = —gk*m. (7.6)

It is easy to make sure that equation (2.18) with this field differs from equa-
tion (1.66) only by the replacement

wy — wy +nk*. (7.7)

Therefore, we can, without solving anew the equation of motion, make this replace-
ment in the final expressions for 1 components. In particular, we get from (1.54)

_ (wh + k%) (wh + 1k + wir) — W? WW M

- (wh + 7k2)? — o Mo = (o + k) — w

=, (78)

If the dissipation should be taken into account, it is sufficient to make the replace-
ment (1.68) in (7.8)

The parameters of the medium y and , now depend not only on frequency but
also on the wave number k. Such dependence (in general case, the dependence
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on the direction of k, as well) is called space dispersion.!

Substituting (7.8) into (6.3) and assuming 1 = 1, we get the dispersion relation

k2 + k2
w? = <w1.1 + nk2> (wy +nk? +wy ——k—z——”i)
= (wy + nk2> (wH + nk2 + wyy sin? Gk). (7.9)
It can be rewritten as
w? = AL — |Bi)? (7.10)
where
2 | ) 1 .2
Ay =wy +nk +§stm 8 |Bk|:§stm G. (7-11)

The second method of deriving the dispersion law (7.9) was used by Herring
and Kittel [180]. They found, first of all, the dependence of the internal magnetic
field hjs on the ac magnetization, which is determined by the magnetostatic
equations (6.2). For plane waves, it follows from these equations that

4r
hy = —pk(mk). (7.12)

This field is substituted, then, into the equation of motion (2.18), which, in this
case, takes the form

iwm + (wy +iaw)m x 2o + %—;izo X (hex + hy) =0 (7.13)

(2o is a unit vector parallel to Mp). Projecting (7.13) with o = O onto the axes T
and y and equating the determinant of the obtained system to zero, we get (7.9).

The curves w vs k at constant Hy = wpy /7 and the curves Hy vs k at constant
w are plotted in Figure 7.1. At very large k values, when nk? > wy,wy, the
spin-wave dispersion relation approaches the quadratic law w = nk?, obtained
in 1930 by Bloch [52]. If wy < wy + nk?,

1
w= Ay =wy +7)k2+ EwM sin2 ;. (7.14)

The spin-wave phase velocity vpn = w/k passes through a minimum at certain
values of k = k; and w = w; depending on the angle ;. In particular, at 6, = 0

WH
ky = T w1 = 2wy Uphmin = 2v/TIWH - (7.15)

IThere exists another type of the space dispersion, a linear dependence of the antisymmetric ¢
components on k leading to the phenomenon of natural optical activity (e.g., [246]).
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FIGURE 7.1

Dispersion characteristics of spin waves in an isotropic ferromagnet with My = 139 G and
n =9.16 x 1072 (YIG at room temperature): (a) Ho = const = 1 kOe, (b) w = const =
2719 GHz.

The group velocity

_ 0w 2k
vgr = 8—k = —
where £ is the ratio of the approximate value (7.14) of the frequency to the exact

value.
Expression (7.9) can be written in the form

(wH + nk? + %ww sin? Ok) = 2nk¢ (7.16)

nk? = wy (0x) — Wi (7.17)

where

1 L
wi (6k) = vHoc(6k) = \/uﬂ + <§wM sin? ()k> - sz sin? 0. (7.18)

One can see from (7.17), as well as from Figure 7.1, that the propagating spin
waves (with k2 > 0) exist only if Hy < Ho(6r). The quantity Hoc(6y) is
maximal at 8, = O:

w

Ho(0) = - (7.19)

The maximal value of k also takes place at §;, = 0:

Fomae = \/§ (7.20)
n

For YIG at 9 GHz, kmax = 8 x 10,
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FIGURE 7.2

Degeneration of spin waves with uniform oscillations of magnetization in a ferromagnetic
sphere: (a) when condition (6.8) is satisfied, (b) when it is not satisfied.

Let us discuss now the degeneration of the uniform precession of magnetization
with spin waves. If k£ > d~! (where d is the minimal sample dimension), the
influence of the boundary conditions for the ac fields on the spin-wave dispersion
law is immaterial. Then, expression (7.9) can be used for the spin-wave frequency,
together with formula (1.92) for the frequency of uniform precession. It is easy
to show that the degeneration always exists if the exchange interaction is taken
into account, contrary to nonexchange spin waves (Section 6.1). The degeneration
takes place in the range k; < k < k» (Figure 7.2) if condition (6.8) is satisfied,
and in the range 0 < k < k; if this condition is not satisfied. For an ellipsoid of

revolution,
N M
kr =y /7_;__0 (7.21)

Consider now spin waves in an anisotropic (single-crystal) ferromagnet. We will
not take into account the anisotropy of the nonuniform exchange constant (which
usually turns out to be small), i.e., we will regard g as a scalar and use formula (7.4).
When we substitute the effective field (7.4) into the linearized equation of motion
for an anisotropic ferromagnet (Section 2.3), we notice that this equation differs
from the equation without he, only by the replacement (7.7). Therefore, it is
sufficient to make this replacement in the corresponding nonexchange dispersion
relations, e.g., in (6.18) or (6.19). Let us cite, as an example, the simple expression

2
(%) = (Ho + H* + Dk?) (Ho + H” + Dk* + 47 M sin® 6r)  (7.22)
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which is valid in the following cases: when M) is directed along the axis—or lies
in the easy plane—of a uniaxial crystal, when M is directed along the (100) axis
of a cubic crystal, and when it is directed along the (111) axis of such crystal. In
the first two cases, as it was pointed out in Section 6.1, HA = 2K, /Moy, and in
the third case HA = —4/3 K /M.

7.1.3 Magnetization, field components, and damping

To get the ac magnetization components of a spin wave we must find the solutions
of the system obtained by projecting (7.13) (with & = 0) onto coordinate axes;
expressions (7.6), (7.12), and (7.9) are to be taken into account. Directing the
coordinate axes in such way that k vector will lie in yz plane, we get

) -1/2 A B
My _ (1 + stm_Of) = _i_’“_if_‘, (7.23)
me wpg +nk Ay — | Bi
If 6, = 0, then m,, = —im,, i.e., the ac magnetization is right-hand circularly

polarized. If 6 # 0, the polarization is ellipticul; the polarization ellipse, as it
follows from (7.23), is compressed in the direction of the k projection on zy plane.
The ellipticity (1.101) decreases with increasing .

The electromagnetic-field components of a spin wave can be found using the
general solutions of Maxwell’s equations for propagating waves in an unbounded
medium (Section 4.2). But the expressions obtained with allowance for exchange
interaction should now be taken for i and p,. The energy flow can be calculated
using the general formula (4.69). In contrast to nonexchange magnetostatic waves
in an unbounded medium (Section 6.1), the energy flow is now not equal to zero.

To analyze the damping of spin waves we can make the replacement (1.68) in the
dispersion relation (7.9). Two statements of the problem are possible. In the first
case, the attenuation of a stationary propagating wave (w" = 0) is considered. In
the second case, we are concerned with the damping of a standing wave (k" = 0).
Formula (6.7), which relates k" (for the first case) to the w" (for the second case)
holds, if the losses are small, for an arbitrary dispersion law (Section 6.1). Hence,
this formula is valid for exchange spin waves, toc.

In the first case (w” = 0, k = k' —ik") two real equations that are equivalent to
the complex dispersion relation give the dependence of k' and k" on w. Without
dwelling on the solution of these equations, we only cite the exact formula

aw

kl kll -
2n

(7.24)
The dependence w(k’, k") is shown schematically in Figure 7.3. If k" < k', the
value of k, found without regard to losses, can be taken for k'; the value of k" is
then obtained from (7.24). But if the condition 4" < k' is not satisfied, one of
the quantities, k" or k", should be found from the exact equations following from
the complex dispersion relation; the other can be found using (7.24).
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FIGURE 7.3

Dispersion characteristics of a spin wave (8 = 0) with allowance for losses. Dashed
lines are projections of the curve w(k', k') onto the planes (w, k') and (k', k'), dotted line
represents w(k') dependence when losses are not taken into account.

Expression (7.24) shows that k" increases with decreasing k' and becomes
equal to it at

k' =/ — = kuin- (7.25)

When k" exceeds k', the process cannot be referred to as a propagating wave.
An estimate for a YIG single crystal (AH = 0.3 Oe) gives kmin = 4 x 10°. It
should be noted that the ‘disappearance’ of spin waves in an unbounded medium
at k" > k' is the consequence of the decrease of group velocity, and it is removed
by taking boundary conditions into account. So, spin waves with small & in plates
and rods, considered in Section 6.2, do not disappear.

In the second case (k" = 0, w = w’ + iw"), the inequality w” < w' is always
satisfied if & < 1. The complex dispersion equation can now be solved in the first
approximation assuming w’ to be the same as in the absence of losses. Then,

W' = owé (7.26)

where £ is the same as in (7.16).
The following quantities are often used in examining the damped spin waves:
the free path

Iy = (7.27)
and time of life

Tk = —. (7.28)
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They characterize the damping, respectively, in space and in time of the squared
spin-wave amplitude. These quantities have direct meaning for the quasiparticles
that correspond to spin waves (Section 7.3).

7.2 Spin waves in bounded bodies

In this section we will study the influence of the nonuniformity of the medium
and, first of all, the influence of the boundaries between different media on spin-
wave propagation. As in Section 6.2, the equation of motion and the Maxwell
equations should now be solved making allowance for the electrodynamic bound-
ary conditions. The magnetostatic approximation can be used (for nonmetallic
ferromagnets)? even more rightfully than in Section 6.2. But first, the effective
field of exchange interaction should be substituted in the equation of motion. And
second, the supplementary (exchange) boundary conditions should be introduced.

7.2.1 Exchange boundary conditions

The need of supplementary boundary conditions, when the exchange interaction
is taken into account, follows formally from the fact that the derivatives of m,
with respect to coordinates, appear in the equations of motion. Therefore, the
order of differential equations which are obtained from the equation of motion
and the electrodynamic equations increases. Solutions of these equations contain
more arbitrary constants, and ‘ordinary’ electrodynamic boundary conditions are
not enough to find these constants.

The physical reason for introducing the supplementary boundary conditions is
that the fields, acting on magnetic moments in a thin layer near the boundary,
differ essentially from the fields inside the sample

The supplementary (exchange) boundary conditions, as Rado and Weertman
have shown [325], can be deduced from the equation of motion of the magnetiza-
tion, like the electrodynamic boundary conditions are deduced from the Maxwell
equations. Let us write the equation of motion (2.9) in the form

1M

;7+MxHef+qM><V2M+MXHs:0 (7.29)

where ¢V2M is the nonuniform part (7.3) of the exchange effective field; H is
the effective field of the surface anisotropy, which exists only in the thin boundary
layer; and H includes the external magnetic field and all effective fields which
vary slowly in space: effective fields of anisotropy, effective fields responsible for
dissipation, etc.

2Spin waves in metals will be considered in Section 14.2.
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The surface anisotropy, which describes the special conditions in the boundary
layer, is usually regarded as uniaxial, with easy or hard axis normal to the boundary
surface. However, it can be unidirectional, i.e., when the opposite directions of the
normal to the boundary are not equivalent. A more general case is also possible
when the easy directions lie on a cone with the axis normal to the boundary. We will
consider the case of uniaxial surface anisotropy. Then, taking into account only
the first constant of this anisotropy, we can write, according to (2.7) and (2.40),

2K,

H=5p

(Mmngy)ng (7.30)
where ny is a unit external normal to the boundary of the ferromagnet.

Consider a boundary of a ferromagnet with a nonmagnetic medium and integrate
(7.29) over a volume V' (Figure 7.4) of a disc ‘slit’ by the boundary. The thickness
of the disc 2d is assumed to be small but larger than the thickness d, of the
boundary layer. The two first terms of (7.29) make negligible contributions, and
the result of integration can be written in the form

L+L=0 I]IQ/MXVZMdV 12:2/£‘2(Mn0)MxnodV.
|4 VM()

(7.31)
Transforming /; into a surface integral and assuming the area of the disk ¢ to be
small, we get

M
I} = —oqM x 3— (7.32)
on
—ds 2K,
I, = 0‘/ —5 (Mnp) (M x ng)d¢ (7.33)
o Mg
where ( is the coordinate in the direction of ng. Integral (7.33) can be written as
L = UZ—K;(MTLO)M X ng (7.34)
Mg

which may be regarded as a definition of the constant of the surface anisotropy K.
If My does not depend on (, then
—ds

K, = Kdc. (1.35)
0

Substituting (7.32) and (7.34) into (7.31), we get the boundary condition
oM 2K
an + -]702 (moM)ngx M =0 (7.36)

which is applied to the vector M in the ferromagnet outside a thin boundary layer.
This layer is excluded from consideration, and its properties are taken into account
by a single parameter K.

qM x




188 7 Spin waves

FIGURE 74
Boundary of a ferromagnet (( < 0) with a nonmagnetic medium.

In the case of small oscillations of magnetization, we substitute M = My +
m exp(iwt) into (7.36). Then, assuming My = const (in the absence of domains)
and equating the sum of terms linear in m to zero, we obtain the exchange
boundary condition for the complex amplitude m:

om
2Zg X % + £ [(nom)no X zo + (‘n.()Z())’no X m] =0. (7.37)
Here 2 is a unit vector in the direction of Mj and
2K,
= . (7.38)
aM;

This parameter can be either positive or negative. according to the sign of K.
Projecting (7.37) onto the coordinate axes shown in Figure 7.4, we obtain the
boundary conditions in the form proposed by Soohoo [374]:

oms +&mgcos20 =0 omy
on

where 8 is the angle between Mj and the normal to the boundary surface (Fig-
ure 7.4). If 8 = 0 (normal magnetization),

+ &my cos?9 =0 (7.39)

om,
—-an y + me,y =0 (740)
and for § = 7 /2 (tangential magnetization),
om, _ omy
o E&m, =0 ek 0. (7.41)

The parameter £ characterizes the degree of fastening (‘pinning’) of magnetic
moments at the boundary and can be called the pinning parameter. In the limiting
case of £ = 0 (no pinning or free magnetic moments), it follows from (7.39):

om
Sy =0 (1.42)
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In the other limiting case of perfect pinning (§ — 0),if 6 # /2,
m = 0. (7.43)

The boundary condition (7.42) was first used by Ament and Rado [16], and
condition (7.43) was proposed by Kittel [223]. The general case was studied
by Rado and Weertman [325] and by Kaganov [195].

It should be noted that the relative values of the first and second terms in (7.39),
(7.40), or (7.41) depend not only on £ but also on the rate of change of the
ac magnetization in the direction of the normal to the boundary surface. For spin
waves, these values depend on the projection of k onto this direction.

7.2.2 Standing spin waves in films

Proceeding to the study of spin waves in ferromagnetic films, consider first the
case when the projection of the wave vector onto the film surface k| = 0. Such
standing spin waves can be regarded as magnetization oscillations, uniform over
the film surface and nonuniform in the direction normal to the surface. Kittel [223]
predicted that such oscillations can be excited by a uniform ac magnetic field.
Seavey and Tannenwald [355] corroborated this prediction experimentally. This
phenomenon was called spin-wave resonance (SWR) and was investigated in a
wealth of experimental and theoretical works (see, e.g., books [333, 374] and a
review article [125]).

Let us consider first the eigenmodes of standing spin waves in films, in the
absence of damping and exciting field. We have to find joint solutions of the
equation of motion and magnetostatic equations that satisfy the electrodynamic
and the above-studied exchange boundary conditions. Solving this problem,
we can apply the same two methods as in the case of waves in an unbounded
medium (Section 7.1). Using the second of these methods, we must first find the
relation between magnetic field and magnetization that follows from magnetostatic
equations with electrodynamic boundary conditions. From expression (7.12) we
obtain in the present case, when k is parallel to n,

hM = -—47rn0(mno). (744)

For eigenoscillations, hjs is the total ac magnetic field. It is equal to zero
outside the film and has no tangential componentinside. Thus, the electrodynamic
boundary condition h, | = h. is satisfied. It is easy to make sure that the second
boundary condition, b,,; = by, is also satisfied by the field (7.44). This field
must be substituted into (7.13), and the solutions of this equation that satisfy the
exchange boundary conditions are to be found.

Consider the case of a normally magnetized film. In this case, hjs = O not
only outside but also inside the film. The cylindrical symmetry of the system
requires the use of circular magnetization components m . The condition of the
existence of nonzero solutions of (7.13) (with a = 0) results in the expression for
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eigenfrequencies
wt =+ (wy +nk2) . (7.45)

As wy > 0 by definition, oscillations with left-hand polarization (with frequency
w-) exist only at imaginary k, and sufficiently large |k,|. The frequency w,.
(for real k) coincides with the frequency (7.9) of spin waves propagating in the
direction of My in an unbounded ferromagnet.

Let us examine the case when the pinning parameter has different values at
different sides of the film. The exchange boundary conditions, according to (7.40),
should now be written as

S0 | emy =0 at z=0
oz
a;n—;+§2mi=0 at z=d. (7.46)

The solutions can be sought in the form
my = Ay cosk,z+ Bysink,z. (7.47)
Substituting (7.47) into (7.46), we get an equation for k,:

ki-&&

cotk.d = . 7.48
T RG+e 749
In the particular case of £; = &; = &, (7.48) is equivalent to the equations
k.d k&
cot ; = ?” (7.49)
tan kd _ k. (7.50)
2 T .

If £ > 0, these equations have only real roots, and only right-hand polarized
oscillations exist. Figure 7.5(a) shows the graphical solution of (7.49) and (7.50)
in this case. Denoting the roots by k., (n = 1,2,3,...) and taking into account
that wy = vH.o — wp, we obtain from (7.45)

Wn

= Heo — 4nMo + DK ,. (7.51)

If § = oo (perfect pinning), k.» = nr/d, and if £ = O (no pinning), k,, =
(n — )r/d.

It is easy to make sure that the roots of (7.49), i.e., the odd n values, correspond
to the dependences m (z) which are symmetric with respect to the middle of
the film, and the roots of (7.50), i.e., the even values of n, correspond to the
antisymmetric m.(z) dependences. The patterns n: . (z) are plotted in Figure 7.6.
One can see, in particular, that the solution with 7. = 1 at ¢ = 0 represents the
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FIGURE 7.5
(a) Graphical solution of equations (7.49) and (7.50) for {d = 4 and (b) dependence of the
roots on the value of £d [333]. Solid lines correspond to (7.49), and dashed lines, to (7.50).
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FIGURE 7.6
The ac magnetization patterns for standing spin waves in normally magnetized films with
symmetric (£; = €2 = ¢) and antisymmetric (£, = —¢2) exchange boundary conditions.

uniform oscillation, and its frequency (1.96) follows from (7.51). At § # O the
uniform oscillations do not exist.

If £ < 0, each equation (7.49) and (7.50) has, in addition to the real roots, one
imaginary root k, = ik.. These roots correspond to the hyperbolic (or surface)
modes (Figure 7.6). The behavior of real and imaginary roots with changing §
is shown in Figure 7.5(b). According to this figure and expression (7.51), the
frequencies of surface modes decrease with increasing || and become equal to
zero at Dk? = H.o — 41w My. At still larger k (or smaller He) the eigenmode is
the left-hand rotating magnetization [215].

Another interesting particular case of {; = —& = £ (Figure 7.6) was inves-
tigated by Korchagin and Khlebopros [232]. It follows from (7.48) that in this
case k, = nw/d, independently of the value of {. These boundary conditions
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can be realized, as Wigen et al. have shown [442], by means of depositing thin
(d1,2 < d) layers with magnetizations My < M, and My, > M, onto the film
(with thickness d and magnetization M,).

Now consider briefly the excitation of standing spin waves in a film by a uniform
ac magnetic field. The magnetization can be sought in the form

my =Y Coamy, (7.52)

n=1

where m ., are the magnetizations (7.47) of the eigenmodes. They are orthogonal

and can be normalized, e.g., so that /A% + B}, = 1. The coefficients C,, are
determined by formula (6.110). If the ac magnetic field is uniform, it can be taken
out of the integral, and the quantity

d
gﬂin=/ mynpds (7.53)
0

remains in the numerator of (6.110). This quantity is the normalized magnetic
moment of the nth mode related to unit area of the film.

We will limit ourselves to the case of §; = & = £ > 0. Substituting (7.47)
(for right-hand polarized modes, which are the only existing modes in this case)
into (7.53), we obtain for symmetric modes (with odd n values)

1 ¥2,\ 2
My, = P (1 + £_2> . (7.54)

For antisymmetric modes, M, ,, = 0, which is clearly seen from Figure 7.6. Thus,
only symmetric modes (withn = 1,3,5,...) are excited by a uniform magnetic
field. Note that this is also valid in the case of antisymmetric boundary conditions
(& = —&). It follows from (7.54) that the effectiveness of excitation is the
greatest for £ = oo and approaches zero for ¢ = 0.

When the frequency or the steady magnetic field is varied, the C,, values change
in a resonance manner and the modes are excited one after another (Figure 7.7).
It can be shown that the condition for the absorption maxima of the neighboring
modes to be resolved is

d<omy/-—=. (7.55)

Therefore, thin films should be used to observe the spin-wave resonance. For YIG
(D=52x10"% AH =0.50e)and n = 1, dpax ~ 3 pum.

The quantity that is measured in experiments on spin-wave resonance is the
ac magnetic moment M. If condition (7.55) is satisfied, the moment for the nth
mode is

m™ = scam,., (7.56)
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FIGURE 7.7
Spectrum of standing spin waves (SWR) in normally magnetized cobalt film with thickness
d = 0.294 pm at frequency of 8.8 GHz [400].

where M, is the normalized moment (7.53), S is the film area, and C is the
multiplier in formula (6.110). At resonance (w = w!), taking (6.110) and (7.54)
into account, we find

CSw K2 B
mm = 25 (k2 {1+ 5 hy. 7.57
| | 'YAH l: zn {2 + ( )
In the case of perfect pinning (£ = 00, k; » = n7/d), the moment is proportional
ton~2,
Spin-wave resonance in fangentially magnetized films was investigated in detail
by Salanskii and Erukhimov [333]. Here we will make only some brief remarks.
The field (7.44) is not equal to zero in this case. Substituting it into (7.13) and
projecting this equation onto axes z and y (the axes are directed as in Figure 6.5),
we get the expression

WP = (wi + nk2) (wa + k2 +wn) (7.58)
which coincides with the dispersion relation (7.9) for 6, = m /2. Equation (7.58)
has, at constant w, two roots, k2 | ,. One of them, k2, is positive if w > wy . The
second root, k2 ,, is always negative. The partial solutions corresponding to the
roots k2, and k2, can satisfy, individually, the exchange boundary conditions at
both sides of the film only if £ = 0. For all other values of &, the sum of these
partial solutions satisfies the boundary conditions and, hence, is the eigenmode.
The partial solution corresponding to k decreases quickly with distance from
the surfaces of the film. Therefore, it does not materially affect the dispersion law,
which can be written in the form similar to (7.49), with certain effective value of
the pinning parameter &s [333].

Originally metal films were used in the experiments on spin-wave resonance
(e.g., [355, 400, 232]). The presence of conductivity was not of great importance
because the thickness d was much smaller than the skin depth § (Section 4.2).
Later on nonmetal films were used, as well (e.g., [353,456]). In many early works
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the disagreements with the above-mentioned theoretical dependences took place.
The main cause of these disagreements was the nonuniformity of the parameters,
e.g., of My, over the thickness of the film [83]. When high-quality uniform films
became available, the predictions of the theory were confirmed (e.g.,[35,32]). The
spin-wave resonance became one of the techniques for investigation of magnetic
films, first of all, for the measurement of the exchange constant D. It should
be noted that the above-mentioned case of antisymmetric boundary conditions
(§2 = —¢&1) turned out to be very useful because the value of D can be found
independently of the ¢ value.

7.2.3 Propagating spin waves in films

In the analysis of propagating spin waves in films a difficulty arises similar to one
discussed above for standing spin waves in tangentially magnetized films: partial
solutions, taken separately, cannot satisfy all boundary conditions. However, an
exception exists: the normally magnetized metallized film with £ = 0 at both
surfaces. Although this case can hardly be realized, it will help us to reveal some
features present in more realistic cases.

It was shown in Section 6.2 that the potential 1 = cosk,z exp(—ikyy) en-
sures the satisfaction of the electrodynamic boundary conditions for a normally
magnetized metallized plate. It can be easily shown that, if £ = 0, the exchange
boundary conditions are also satisfied. So, the wave with this potential remains a
normal wave. Then, substituting k> = k2 + k2 into (7.9), we obtain

w? = (wy +nk? + nk?) (wH + nk? + nkl + (7.59)

WM
)
where, according to (6.25), k, = nw/d and n = 1,2, 3,... denotes the number
of the branch. If  — 0, (7.59) transforms into (6.27);if d — o0, (7.59) gives the
dispersion relation (7.9) of a spin wave in an unbounded medium for O = 7/2;
and if ky, = 0, (7.59) transforms into expression (7.51) for the frequencies of
standing spin waves. The curves w vs k, calculated with (7.59) are plotted in
Figure 7.8.

In all other cases the examination of exchange spin waves propagating in mag-
netic films is much more complicated. Two methods (as in the case of an un-
bounded medium) can be used. They differ by the order of taking into account the
magnetostatic equations and the equation of motion.

The first method was used by Gann [133] (who was the first to solve this
problem) and then by Filippov [117], De Wames and Wolfram [90], and by many
others. The dependence m(h), which follows from the equation of motion and is
expressed by the tensor Y, is found first of all. Then we look for the solution of
electrodynamic equations (in magnetostatic approximation) that satisfies both the
electrodynamic and the exchange boundary conditions.

The second method was proposed by Vendik, Chartorizhskii, and Kalini-
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FIGURE 7.8

Dispersion characteristics of spin waves in normally magnetized metallized films with
& = 0 calculated by formula (7.59) (solid lines). Dashed lines represent the characteristics
calculated by (6.27) without allowance for exchange interaction. Heo = 3.9 kOe, YIG at
room temperature.

kos [420, 421] and was also widely used (e.g., [205]). Apply this method, we
first find the dependence of the demagnetizing field h)s on magnetization m,
which follows from magnetostatic equations and the electrodynamic boundary
conditions. Then we look for the solutions of the equation of motion satisfying
the exchange boundary conditions.

Let us consider in more detail the main steps of both methods for the case of a
normally magnetized film assuming that there is no dependence on z (Figure 6.3).
Using the first method, we must find the solution of the Walker equation (6.14)
satisfying both electrodynamic and exchange boundary conditions. We substitute
the potential (6.23) into this equation using formula (7.8) (with k? = kX +K2)
for u. Then, we obtain an expression of the same form as (7.59), which is, at
given w and k,, a bicubic equation for k.; the roots of it are lkz| = k; p(w) (p =
1,2,3). Substituting these roots into (6.23), we obtain the potentials v, which
correspond to the partial waves. The sum of these potentials contains six arbitrary
constants. In the case of a metallized film, there are six boundary conditions: an
electrodynamic and two exchange conditions at each side of the film. For a free
film, there are two constants more, in the expressions for the potentials outside
the film, and two electrodynamic boundary conditions are added.. Thus, in both
cases the sum of three partial waves can satisfy all boundary conditions; so, this
sum represents a normal wave. Equating to zero the determinant of six or eight
equations obtained from the boundary conditions, we find the dispersion equation
F(w, ky) = 0. The roots w, (k) of this equation correspond to different branches
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of the spin-wave spectrum.

Using the second method, we find, first of all, the relationship between the
magnetization m (regarded at this stage as given) and the field ks, which is the
effective field of the internal magnetic energy. This field and the given external
magnetic field k. (if the problem of the wave excitation is considered), as well
as the effective fields of the exchange interaction and of the anisotropy, are to be
substituted into the equation of motion. All these fields, except the field ke, are
linear functions of the magnetization m(z,y) = m(z) exp(—ik,y). Solutions
of the equation of motion that satisfy the exchange boundary conditions are then
to be found. It is advisable [205] to represent the functions m.(z) and m,(z)
as series in the solutions m; ., of the equation of motion without the field h ;.
In the considered case of normal magnetization, it is necessary, of course, to use
the circular components m;+. These are just the solutions of the above-studied
problem of standing spin waves in a normally magnetized film because in that
case hps = 0. After substituting the mentioned series into the equation of motion,
we get an infinite system of linear equations for the coefficients in the series.
The condition of compatibility of these equations yields the dispersion relation
F(w,ky)=0.

Both methods are, of course, equivalent and both lead to calculations that can
be fulfilled with the use of computers. We will cite some qualitative results of
such calculations. The frequencies of all branches increase with growing k,, as
in the simple case considered above (Figure 7.8). But, as distinct from Figure 7.8,
now the repulsion of some branches takes place. The character of the exchange
boundary conditions has a great influence on the dispersion relations and on the
m (z) patterns. Atsmall &, values, these patterns are like the patterns in the case
of k, = 0 (Figure 7.6).

The dispersion curves of spin waves in a tangentially magnetized film are plotted
in Figure 7.9. The values of w at ky — 0 (k) is the wave-vector component in
the direction of propagation) are the frequencies of spin-wave resonance. For
waves propagating normally to Mj, the frequencies of all branches increase with
growing k|, and the repulsion of the branches with the same parity takes place.
If losses are taken into account, the kl” maxima should appear in the regions of
repulsion. Waves propagating normally to the M, direction are now no longer
pure surface waves, as in the nonexchange case (Section 6.2).

For waves propagating along M, the dependences of w on k| are not mono-
tone (Figure 7.9). At small k|| values, the influence of magnetic (dipole-dipole)
interaction and of the electrodynamic boundary conditions dominates. This leads,
as in the case of nonexchange waves, to the decrease of w with growing k. At
larger k|, the exchange interaction dominates and the frequencies increase.

Comparing the dispersion characteristics of the exchange spin waves with the
characteristics obtained in the nonexchange approximation (Section 6.2), one can
see that the latter are approximately valid at sufficiently small k| and sufficiently
large values of the film thickness d. It is not obvious, at first sight, that it should be
so because the exchange boundary conditions always influence the magnetization.
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FIGURE 7.9

Dispersion characteristics of spin waves in a tangentially magnetized YIG film for different
propagation directions (schematically). Solid lines correspond to 8 = /2 and dashed
lines, to By = 0. d = 1 um, Hy = 1.25 kOe.

Indeed, these conditions materially influence the distribution of magnetization in
the regions near the surfaces of the film. With decreasing k|| and increasing d,
the relative volume of these regions grows smaller and, hence, the influence of the
exchange boundary conditions on the dispersion relations diminishes.

Consider now the exchange spin waves in a film of finite width (a spin-wave
waveguide) magnetized, e.g., in the direction of a normal to the film surface. The
boundary conditions, both electrodynamic and exchange, at surfaces z = 0 and
z = w (for 0 € z < d) must now be taken into account, in addition to the
boundary conditions at the surfaces z = 0 and z = d. The problem becomes
much more difficult than in the nonexchange case (Section 6.2), in which it also
cannot be rigorously solved (except when the waveguide is completely metallized).
However, if the film width w is sufficiently large, we may approximately substitute
k2 + k2 for k2 in the dispersion relation and take for k the allowed (‘quantized’)
values k, = n,m/w. It will result in splitting of each branch of the spectrum into
an infinite number of branches.

If all dimensions of the film are finite, the spin-wave spectrum, like the spectrum
of nonexchange, Walker’s oscillations (Section 6.3), should be an infinite discrete
set of eigenfrequencies. To find them, taking into account the effective field of
exchange interaction and all boundary conditions, is a problem not solved strictly
until now. Butlet us discuss the problem qualitatively. Consider, e.g., arectangular
film of the width w and the length [. Suppose that the above-considered problem
is solved for a film of the same width and infinite length, so that we know the
dispersion law for such a spin-wave waveguide. It is clear that the solution in
the form of a standing wave with one value of &, cannot satisfy all boundary
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FIGURE 7.10
Excitation of a spin wave in a nonuniform steady magnetic field near a turning surface.

conditions at surfaces y = 0 and y = {. But, if [ is sufficiently large, we can
ignore this fact and suppose that a certain ‘quantization’ condition takes place,
e.g., ky = ny7/l. Then, the allowed k, values will mark discrete points, i.e., the
eigenfrequencies of the spin-wave resonator, at all branches of w(k, ) dependence.
The intervals between the neighboring frequencies will be larger the smaller the
length [ is.

7.2.4 Spin waves in nonuniform magnetic fields

We will now briefly consider the spin-wave propagation in a ferromagnet with
parameters continuously changing in space. Of the greatest interest is the case
when this change is due to the nonuniformity of the steady magnetic field. If
the change of Hy is slow enough, we may assume that an ‘ordinary’ spin wave
propagates in such a medium with slow-changing parameters, but the wave vector
k changes continuously in space. The condition of slow change can be written in
the form

|V Hy| < |k|Hp. (7.60)

At certain surfaces the field Hy can have such value that the wave vector k = 0.
Near these surfaces condition (7.60) is not satisfied, and we must find a strict
solution of the equation of motion with variable parameters. This solution must
transform into a wave with slow-changing k at one side of the mentioned surface; at
another side of this surface it must transform into a spin oscillation with amplitude
decreasing exponentially in the direction of VHy. By analogy with a quantum-
mechanical problem of the motion of a particle near a potential barrier [336], the
considered surface can be named the turning surface.

The one-dimentional problem of this kind was solved by Schlomann and
Joseph [346, 347]. The field was assumed to be directed along the z-axis and
to change monotonically with z (Figure 7.10). One can suppose that the right-
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hand circularly polarized ac magnetization m, will depend on z, as shown in
Figure 7.10. Then, a nonzero eigenmoment will arise near the turning plane
z = 2. And if a uniform ac magnetic field is applied in this region, it will
excite a spin wave with changing k propagating from the turning plane in the
direction of decreasing Hy. A nonuniform internal field can be realized, e.g.,in a
ferromagnetic or ferrite cylinder put into a uniform external field H, .

A similar problem for a normally magnetized disc was studied theoretically and
experimentally by Eshbach [111]. In this case, Hy changes in the radial direction,
the turning surface is a cylindrical surface, and spin waves propagate to the center
of the disc.

Morgenthaler and Stancil later (e.g., [384]) investigated in detail the propagation
of spin waves in films in nonuniform magnetic fields. It was found, in particular,
that spin waves propagate, as well, along the turning surfaces. Of special interest
is the case when the closed turning surface bounds a region in which k2 > 0. Spin-
wave oscillations (standing waves) exist in this region; outside it, the magnetization
decreases exponentially. Such a spin-wave resonator (‘magnetic pit’) can be
realized, e.g., by diminishing the external magnetic field in a small region of a
normally magnetized film [206]. The losses in such resonators (as well as the
losses of waves propagating along the turning surfaces) are small because there
are no contributions of the relaxation processes due to the scattering of spin waves
by defects present at real boundaries.

7.3 Magnons

In this section we will use the general principle of corpuscule-wave duality
(e.g., [243]) and ‘translate into corpuscular language’ the results obtained above
on the quasiclassical, continuum model.

7.3.1 Quantization of magnetic oscillations and waves

Oscillations and waves of magnetization in magnetically ordered substances can
be regarded, respectively, as ‘crowds’ or flows of quasiparticles with energy

£ = hw (7.61)
and quasimomentum
p = hk. (7.62)

These quasiparticles are called magnons. The dependence w(k), discussed above
in detail, gives at the same time the dispersion law £(p) of magnons.
In the case of uniform oscillations, p = 0 and € = Awyp. In the opposite limiting




200 7 Spin waves

case of very large k values, when w ~ nkz,
N 5
~ T2 7.63
£~ hp (7.63)

Comparing (7.63) with the relation between the kinetic energy and momentum of
a nonrelativistic particle, we see that the magnon with a sufficiently large k can
be regarded approximately as a free particle with the mass mmag = f/(27). For
YIG, Mmag = 5.7 x 10777, which is about six times larger than the mass of an
electron. The difference between the magnon energy hw and the energy (7.63)
can be regarded as the potential energy of a magnon in magnetic fields, external
and demagnetizing, and in the effective field of anisotropy.

The energy W of magnetic oscillations and waves, in the corpuscular language,
is the sum of energies of all magnons that exist in the considered body. This sum
can be approximately divided into two parts:

W=Y ne +) neek (7.64)
v k

Here n,, are the numbers of magnons that correspond to the modes (including the
uniform mode) for which the influence of the boundary conditions is important;
ng are the numbers of magnons with large k values, which can be treated as
corresponding to plane spin waves.

To gain a discrete spectrum, which has been assumed in (7.64), without taking
into consideration the complicated real boundary conditions, the periodical Born—
von Karman boundary conditions (e.g., [24]) can be used for the second sum
in (7.64). Then, the allowed values of vector k projections are

_ 2mp k. = 2rpy k. = 273

ks 2
l 1 Y l2 l3

(7.65)
where 1, I, and I3 are the periods of the dependence on coordinates z, y, and z,
respectively, and p1, p2, p3 are integers. As long as the continuum model is used,
the values of these integers are not limited.

Writing the energy in the form (7.64), we suppose that different modes do not

interact, i.e., the magnon ‘gas’ is ideal. This supposition is valid if we remain in
the limits of a linear theory.

Let us discuss the connection between the numbers of magnons and the ac mag-
netization amplitudes. We have to equate the classical high-frequency magnetic
energy to the quantities n, fw, or ngfiwy. Consider first the uniform oscillations
in a small ellipsoid. Their energy consists of the Zeeman energy (2.15), the inter-
nal magnetic energy (2.16), and the energy of 3nisotropy. The last can be included

formally into (2.16) if we regard the tensor NV in this formula as the sum of the

demagnetization tensor and the tensor N*" (Section 2.1). We write down the high-
frequency energy terms, which are proportional to the squared ac magnetization
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components M. and m.,, and take into account the expression

mix + mi,y

MZZM()— 2M0

(7.66)
which follows from the condition of conservation of the vector M length. We
then find the energy density

U= 2—1% (mZ, +m2,) + %miz (N; — N,)+ %miy (Ny = N.). (1.67)
Equatingitto U = nofwo (Wwhereng = no /V and V is the sample volume), we can
find the connection between ng and the amplitudes m .., and m.,. If the sample
is an ellipsoid of revolution magnetized along its axis, and the anisotropy axis of
a uniaxial crystal or one of the axes (100) or (111) of a cubic crystal coincides
with the axis of the sample, then the ac magnetization is circularly polarized, and

mg

= 2Moyh

o (7.68)

where mg = (m2,, + m%,,)!/%.
For spin waves, we must include the nonuniform exchange energy and the
energy of the volume demagnetizing field hy into the energy density U, but we
must exclude the energy of the surface demagnetizing field. The resuit is again
very simple when the magnetization is circularly polarized, i.e., for spin waves

with 8, = 0:
_m__m

=Y T 2Movh

(7.69)

where my, = (m? , +m2, )/2

Formulae (7.68) and (7.69) are approximately valid, respectively, for an arbitrary
ellipsoid and for spin waves propagating in an arbitrary direction if Ho + Dk?* >
47 My, i.e., when the polarization of the magnetization is nearly circular. If
this condition is not satisfied, formulae (7.68) and (7.69) give only the order of
magnitude.

Taking into account (7.68), (7.69), and (7.66), we obtain an important formula
My — M, =nvyh (7.70)

where n = ng + nk. This means that each magnon of both the uniform precession
and spin waves reduces the z projection of magnetization by a quantity v/ = gus
[g is the g-factor and pp is the Bohr magneton (1.14)].

For nonuniform magnetization oscillations (e.g.,the Walker modes, Section 6.3),
only the numbers of magnons in the whole sample have meaning. To find them
we must equate the high-frequency magnetic energy of the sample, for a certain
mode, to the quantity n,fw,. In the case of circularly polarized magnetization




202 7 Spin waves

(with the amplitude m,), we obtain

1
2M0’7ﬁ

/ m?(r)dV. (7.71)
14

If uniform oscillations, Walker’s modes, and short-wavelength spin waves si-
multaneously exist in a sample, the total change of the z component of the sample
magnetic moment I is

MV -9, = (Vno + Zn,, +V an)'yfi = nvyh. (7.72)
v k

The transverse 90t components are equal to zero for all nonuniform modes, both
Walker’s modes and spin waves. Calculating 92 = smﬁ + EDI; + imi and taking
into account (7.72) and (7.68), we get [376]

M = MoV — (n— noV)~h. (7.73)

Thus, all magnons, except magnons of uniform oscillations, diminish the vector
DT length.

The numbers of magnons are proportional to the squared ac magnetization
amplitudes, just as the numbers of particles in quantum mechanics are proportional
to the squared moduli of the wave functions. We can suppose, therefore, that an
analogy should exist between the equation of motion of magnetization and the
Schridinger equation. Indeed, it is easy to make sure that, in the case of circular
polarization, the equation of motion for the ac magnetization amplitude has the
form of Schrédinger’s equation. Schlémann was the first to point out this analogy.
Tsukernik [407] showed that it takes place in the general case of noncircular
magnetization polarization, too.

The magnon energy ¢ and quasimomentum p are real quantities by definition.
The dissipation of energy of magnetic oscillations and waves is taken into account,
in the corpuscular language, by the finite magnon mean time of life 7;, and finite
mean path length [;. It follows from (7.68) and (7.69) that 7, is equal to the
relaxation time (7.28) of the squared oscillation or wave amplitude. The mean
path length [, for spin waves, is given by (7.27). For oscillations, both uniform
and nonuniform, I is equal to zero.

For damped free oscillations, the numbers of magnons decrease, approaching
the equilibrium (thermal) values, due to the collisions with magnons and other
quasiparticles (Chapters 11 and 12). For stationary (forced) oscillations and waves,
the constancy of magnon numbers is maintained by the processes of their creation,
e.g., due to the annjhilation of electromagnetic-field photons.

7.3.2 Thermal magnons

The magnons we considered above correspond to coherent oscillations and waves
and can be called coherent magnons. They usually have distinct k values and
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distinct values of energy fw where w is the frequency of the field that excites them.
Of course, such a distribution in the k space is nonequilibrium one. At the same
time, in magnetically ordered substances at any temperature 7 > 0 there exist
noncoherent, thermal magnons, which are in thermodynamic equilibrium with
other quasiparticles, first of all, with phonons. The distributions of such magnons
in the k space and over the energies are very broad and depend on temperature
and magnetic field. These distributions are determined by the dispersion law of
magnons (which was discussed in detail above) and by their statistics.

The magnetic moment of a magnon, as it follows from (7.70), is
m = —zpvh = —2zpg9up (7.74)

where zg is a unit vector in the direction of M. Magnons being the elementary
excitations of the electronic magnetic system, we can believe that the magneto-
mechanical ratio v of magnons should be the same as for electrons. It follows,
then, from (7.74) that magnons are quasiparticles with the moment of momentum
(spin) equal to unity. The particles with an integer spin obey the Bose—Einstein
statistics (e.g., [244]). If the total number of particles (or quasiparticles) in the
system is not fixed, which is the case for magnons, the chemical potential for the
system is to be set to zero. Then, the number of particles in a state with energy
(the distribution function) is {244]

-"—1 7.75
"= exp(e/kT) — 1" (7.75)

Thermal magnons materially influence the thermodynamic properties of mag-
netically ordered substances, in particular, the temperature dependences of mag-
netization M (T). To find this dependence we use formula (7.70), in which
My is now the magnetization M (0) in the absence of magnons, i.e., at T = 0,
M, = M(T), and n is the number of all equilibrium magnons per unit volume.
The first sum in (7.64) can be neglected now. Calculating the second sum, we
replace the summation over all k states by the integration over the k space. Then,
using the periodic boundary conditions (7.65), we get

1 _

Let us consider an isotropic ferromagnet and assume, for simplicity, the dispersion
law w = nk2. This will not lead to a great error because we will integrate over
the entire k space, and the states with large k values will make the greatest
contribution. Substituting (7.75) into (7.76) and integrating over the vector k
angles 8 and ¢, we obtain

~ LN k2dk
M(0) - M(T) = 5 /0 TS (7.77)
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FIGURE 7.11

Temperature dependences of magnetization. Points represent experimental data for
EuO [334], CdCr,Se4 [385], and YIG [465]. Straight lines corresponding to the law (7.78)
intersect the axis of ordinates at points [—4.288 — (3/2) Inn]. For EuO and YIG, these lines
are drawn according to the 7 values obtained by other methods [309, 252]; for CdCr2Ses,
they are drawn through the experimental points.

The calculation of the integral in (7.77) results in

&T

3/2
H) = 5.157 x 10~%~3/273/2 (7.78)

M(0) — M(T) = 5.863 x 10~ %yk (
This is the well-known three-halves power law obtained first (on the microscopic
model) by Bloch [52].

The use of expression (7.78) is one of the ways to measure the exchange
constant 7). The experimental dependences M (0) — M (T') for ferromagnets EuO
and CdCr;Se4 and ferrimagnet Y3FesO); (YIG) are plotted in Figure 7.11. For
YIG the three-halves power law is poorly satisfied, especially at high temperatures.
The reason is that the spin-wave spectrum for this ferrimagnet contains 20 branches
(Section 3.3), and the disregard of all of them but the lowest, ‘ferromagnetic’,
branch is permissible only at low temperatures. The position of the asymptotic
straight line at low temperatures agrees with the value of 7 = 0.092, found for
YIG by a more precise method (Section 12.4).

For EuO, the three-halves power law is satisfied badly for another reason: the
magnetization of this ferromagnet is very high (47My = 24000 G at 42 K
[284]), and neglecting the term w s sin? §y in the spin-wave dispersion relation
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is not permissible. For CdCr,Ses with magnetization five times smaller, this
reason is not so important. The law (7.78) is valid for this ferromagnet in a broad
temperature range and yields = 5.9 x 1073,

The magnon contribution to heat capacity can be found in an analogous manner:

d
(Chmag = 37 /k nedk. (1.79)

The calculation results in [227]
(Co)mag = 0113672 (h) 7/2T3/2 = 0.719 73273/, (7.80)

This contribution can be extracted from the measured heat capacity of a nonmetal-
lic ferromagnet by taking into account that the lattice (phonon) contribution is
proportional at low temperature to 7. Thus, the measurement of ¢, can also be
used to find the value of 7.

7.4 Elements of microscopic spin-wave theory

Up to now we have regarded the ferromagnet as a medium characterized by the
magnetization depending continuously on coordinates. But in reality a ferromag-
net, as any solid, is built of discrete microscopic objects: atoms, ions, electrons.
To study the influence of the microscopic structure of ferromagnets on their be-
havior, in particular, on the spin waves, we have to apply microscopic models and,
hence, quantum-mechanical methods of analysis.

Spin waves were proposed in 1930 by Bloch [52] on a microscopic model with
allowance only for the exchange interaction between the electron spin moments.
Ten years later Holstein and Primakoff [184] constructed the microscopic theory
of spin waves taking into account, in addition to the exchange interaction, the
Zeeman interaction of spins with the external magnetic field and the magnetic
(dipole—dipole) interaction. Since then the microscopic spin-wave theory was an
object of numerous theoretical investigations; this theory is presented in many
excellent books (e.g., [14, 226, 412]). The aim of the present section is to give a
brief outline of this theory.

We will use the Heisenberg model of a ferromagnet (Section 1.1), which is
a system of electron spin moments localized at crystal-lattice points and bound
with each other by the exchange interaction. We will see below that the micro-
scopic approach must be used for spin waves with large k values, comparable with
1/a (where a is the lattice constant). For such waves, the influence of boundary
conditions is negligible, only the spectrum becomes discrete. However, the dis-
crete spectrum can be obtained, in the unbounded medium, by use of the cyclic
boundary conditions, as pointed out in the preceding section. Therefore, only
an unbounded ferromagnet will be treated in the present section. The magne-
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tocrystalline anisotropy and other effects caused by spin—orbital interaction also
will not be taken into account, they are described rather well by the quasiclassical
continuum theory.

Then, the Hamiltonian of the model should contain the operators of the ex-
change energy, of the Zeeman energy, and of the energy of the dipole—dipole
interaction. The first is the sum of expressions (1.26). The second can be written
by analogy with classical expression (2.15) taking into account that the projection
of magnetization onto the z-axis (directed along the magnetic field) is

M, =-yh)_S;. (7.81)
f

Here, § 7 is the z projection of a spin s + at the lattice point f, and the summation
is over all spins in a unit volume.

For simplicity, we neglect at present the dipole~dipole interaction. Thus the
Hamiltonian takes the form

HZ’)’th;—ZZ Iff/Sfol (7.82)
f f 1#f

where 878, = 525%, + 5'?5'1’, + S}S’}, The operators 5’;;}‘,” obey the com-
mutation relation [226]

[S‘;, §}‘,] =iAsp S3 (7.83)

and the two others obtained from (7.83) by cyclic interchanging of indices; A ¢ is
the Kronecker delta-symbol (Appendix C).

7.4.1 Diagonalization of the Hamiltonian

Our objective is to transform the Hamiltonian (7.82) into

H=U+ > nker'k) (7.84)
k

where the summation is over all allowed k values and 7, is an operator whose
eigenvalues are integers. Then Uy will be the ground-state energy, e (k) will be the
energy of an elementary excitation, i.e., of a magnon, and 7, will be the operator
of the number of magnons in a certain state.

The conversion of the Hamiltonian (including the energy of the dipole—dipole
interaction) into the form (7.84) was carried out in [184] by means of the famous
Holstein—Primakoff transformations. The first of these transformations is the
transition from the spin operators SA';’y’z to new operators d}L and éy.

Let us pass first to the cyclic combinations

SF =57 +i8Y (7.85)
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and then to the operators d}L and a; which satisfy the following commutation
relations

lar.65] =Ar lagap] =0 |at.af] =o0. (7.86)
Assuming the expression
Si=-S+atay (7.87)

to be valid, it can be shown that

) 1, 1/2A . A 1 .. 1/2
§t = V35 (1 - Ega;af) 4 57 =i%at (1 - Ea;:af>
(7.88)

where, as well as in (7.87), S is the spin quantum number, so that the eigenvalues
of S are S, (S —1),...,(=5).

The operators that satisfy the commutation relations (7.86) are the operators of
creation and annihilation of particles obeying the Bose-Einstein statistics [244].
When they act on the wave functions of the particles in the secondary-quantization
representation (in which the functions consist of the numbers of particles in
different states), the operator d}L increases the number of particles in the f state
by unity and does not ‘touch’ the numbers of them in all other states (e.g., [84]).
The operator Gy decreases the number of particles in the f state by unity. The
operator EL}L ay = 7y is the operator of the number of particles in the f state. In
our case, &}L and a; are the operators, respectively, of creation and annihilation of
spin deviations (i.e., of the change of S by +1) at the lattice point f. The state
of the ferromagnetic sample is represented by the numbers of spin deviations at
all lattice points.

As the operator expressions (7.88) are very complicated, we expand the radicals
in power series and limit ourselves to the first terms of these series:

Sf =Vv2sa;  S; =v2Sa}. (7.89)

This seems to be a very rough approximation, especially for small S values. The
main assumption of the Holstein—Primakoff theory is that this approximation is,
nevertheless, permissible at sufficiently low temperatures when the mean numbers
of spin deviations

ny <L 1. (7.90)

According to the eigenvalues of $2, the numbers of spin deviations at a lattice
point must satisfy the condition

ny <28. (7.91)

This condition restricts the allowed (‘physical’) region in the entire spin-deviation
space, and so, the spin deviations differ from normal Bose-particles. The exact re-
lations (7.88) ensure the fulfillment of (7.91), but the approximate relations (7.89)
do not.
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Substituting the new operators d}L and @ into the Hamiltonian (7.82), we get

H=Uy+Hs+Hs (7.92)
Uo=—YhSNH - 83" I;p (7.93)
for
Ho=AhHY atas +25 35 Ipp (afas - afap) (7.94)
f £
Ha=—=>Y Ispafa,afag. (7.95)
for

Here the sums are over all lattice points, IV is the number of these points, and
f # f' in all double sums.

The Hamiltonian (7.95) can be neglected at sufticiently low temperatures when
condition (7.90) is satisfied. But the Hamiltonian (7.94) does not have the required
form (7.84). This implies that the spin deviations localized at lattice points are
not the elementary excitations of a ferromagnet.

To obtain such excitations (which should be collective excitations of the entire
considered system) the second Holstein—Primakoff transformation is to be per-
formed. We have to pass from the = space to the k space, i.e., to carry out the
Fourier transformation of the operators d}* and G-

1 |
it = —= exp(—ikrs)af  a;=—=» exp(ikrs)ar.  (7.96)
f f) %k f E ) Ak
VN < VN <

The wave vectors in (7.96) are defined nonuniquely (e.g., [24]), an arbitrary
vector of the reciprocal lattice can be added to k. Therefore, the k space should
be restricted to the first Brillouin zone. We will use, as in the preceding section,
the periodical Born—von Karman boundary conditions. The allowed k values are
given, then, by (7.66). But now, in the case of a discrete lattice, these values are
limited by the first Brillouin zone. The number of the allowed k values in this
zone is equal to the number of spins NV in the periodicity volume. We will take
this volume as 1 cm?, thus, N will be the number of spins per unit volume.

The operators d: and d;, obey the commutation relations similar to (7.86), with
replacement of f by k. Therefore, they can be regarded as creation and annihilation
operators of some quasiparticles. These quasiparticles are not localized at lattice
points but belong to the entire lattice. The operator

ik = a7 ax (7.97)

is the operator of the number of these quasiparticles. The eigenvalues of this
operator ny, = 0, 1,2, ... are the numbers of quasiparticles in the k states.
Substitution of (7.96) into (7.94) yields

Fo=yhH > it +25Y Y 1—exp(ikry)] I (7.98)
k k g
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where vy =715 — 7, I; = I, and the last sum is over all lattice points except
one, the initial. The Hamiltonian (7.98) has the desired form of (7.84), and

ee(k) = YhH +25 > [1 — exp (ikr,y)] I,. (7.99)

9

Thus, the transition to the operators &; and a; has brought approximately the
Hamiltonian (7.82) of the Heisenberg model into the diagonal form. Therefore,
these operators can be regarded approximately as the creation and annihilation op-
erators of the elementary excitations of this model, i.e., of spin waves or magnons.
Such is the case, however, only if the dipole—dipole interaction is not included
into the Hamiltonian (7.82).

The spin-operator S projections and, hence, all quantities that depend on them
can be represented as functions of d; and dx. In particular, substituting (7.96)
into (7.87) and summing over all lattice points, we get

Y Si=-SN+Y . (7.100)
f k

The relation (7.70) follows directly from (7.100); the relation (7.72) can be ob-
tained in a similar manner [376].

7.4.2 Discussion of the dispersion law

The dispersion relation (7.99) is to be compared with the classical expression (7.9)
for 8, = O because, for this direction of spin-wave propagation, there is no
influence of the dipole—dipole interaction. In both cases the magnon energy is
the sum of the Zeeman term and the exchange term, the difference is in the form
of the latter. Now it contains the microscopic parameters S and I,, and the k
dependence is more complicated and governed by magnetic structure.

The exchange integrals I, decrease quickly with increasing distance r, between
the spins. Therefore, it is reasonable to take into account only the nearest neighbors
in (7.99). Consider, first, a simple cubic spin lattice (Figure 7.12). Calculating the
sum in (7.99) over six nearest neighbors, we get

ex = YhH + 481 (3 — coskza — coskya — cosk,a) (7.101)

where I is the exchange integral, which is assumed to be independent of the 7,
direction. As another example, consider a face-centered cubic lattice (Figure 7.12),
in which the number of the nearest neighbors Z = 12. Now it follows from (7.99)
that

ex = YhH + 451, [6 — cos(k + ky)a; — cos(ks — ky)ar — cos(ky + k. )a;
—cos(ky — k. )ai — cos(k, + kz)a; — cos(k. — kz)a] (7.102)

where a; = a/ V2, and a, as in (7.101), is the distance between the nearest spins.
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(a) Simple cubic and (b) face-centered cubic spin lattices. The unprimed numbers corre-
spond to the nearest neighbors of the spin in the center. primed numbers correspond to the
next-nearest neighbors.

In the long-wave-length limit (ka < 1) both expressions (7.101) and (7.102)
reduce to

1
er = YhH + §ZSIla2k2. (7.103)
This coincides with the classical expression if
1Z81L ,
= ———a“. .1
) a (7.104)

It is easy to obtain analogous formulae taking into account also the next-nearest
neighbors (the second coordination sphere). Then, for a simple cubic lattice,

n= % <11 + %Iz) a? (7.105)

and for a face-centered cubic lattice,
45 5
n= T (I + L)a* (7.106)

where I and I, are the exchange integrals, respectively, in the first and second
coordination spheres.

If the exchange integrals are unknown, the following expressions can be used
to estimate the value of 7:

n= %AMoAra2 (7.107)
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FIGURE 7.13

Dispersion characteristics of spin waves in a ferromagnet with simple cubic spin lattice
for different directions of propagation calculated (solid curves) by formula (7.101), i.e., in
the nearest-neighbor approximation and without allowance for dipole—dipole interaction.
Dashed curve corresponds to the continuum despersion law.

1 kTca?
T RS+ 1)
They result from (1.24), (1.21), and the relation

271
A= —" 7.109
RS +1) (7.109)
which can be found, in the nearest-neighbor approximation, by equating (2.13) to
the exchange term in (7.93). Formula (7.107) can be rewritten as

1
D= ES-HEa”~ (7.110)

(7.108)

where HE is the ‘molecular’ field (1.22).

As an example, consider the ferromagnet EuO with NaCl structure, lattice
constant aj,; = 5.141 A, and Tc = 69.5 K [284]. The Eu?* ions (S =17/2) form
a face-centered cubic lattice with @ = ay, / V2. The following values of exchange
integrals were found from the neutron-diffraction experiments [309]: I; = 0.606x
and I = 0.119«. From (7.106) we findp = 1.75 x 10~3, which agrees rather well
with the temperature dependence of magnetization (Figure 7.11). Using (7.108),
we getn = 1.34 x 1073,

For the ferromagnet CdCr,Se4 (another example), the values of exchange inte-
grals are unknown. To estimate 7, using (7.108), we take for a the mean distance
between the Cr** ions in this ferromagnet with rather complicated, spinel struc-
ture. This distance can be easily found taking into account that the elementary
cell with aj; = 10.75 A [284] contains 16 Cr3* ions. Using the values of
Tc = 130K [284] and S = 3/2, we find from (7.108) n = 6.2 x 1073, which is
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to be compared with the value 5.9 X 1073 found from the three-halves-power law
for the magnetization (Section 7.3). Such excellent coincidence is accidental. But
it follows from both examples that expression (7.108) can be used to estimate the
exchange constant 7 for ferromagnets. An attempt to use this expression, as well
as other cited formulae, for ferrimagnets meets difficulties connected, first of all,
with the uncertainty in determining the value of .

Thus, the results of the microscopic and the continuum theories of spin waves
coincide if ka < 1, but differ materially when this condition is not valid. Ac-
cording to the continuum theory, the dispersion law is isotropic (i.e., wi depends
only on k) if the dipole—dipole interaction and the magnetocrystalline anisotropy
are not taken into consideration. The microscopic theory, even without allowance
for these interactions, results in a strong dependence of wy, on the direction of k
with respect to the axes of spin lattice (Figure 7.13). The values of k£ and w;, are
unlimited in continuum theory. In microscopic theory the k vectors are defined
only in the first Brillouin zone (i.e., k < 108) and wy, does not exceed the value on
the order of 4ZS 11/l ~ 10M—10".

Let us discuss briefly the magnon contributions to the thermodynamic character-
istics of a ferromagnet, according to the microscopic theory. These contributions
depend, in general, on three factors: the statistics of magnons, the region in k space
over which the summation (or integration) is carried out, and the dispersion law.
Magnons are approximately Bose-particles in both theories, continuum and mi-
croscopic. The fact that the summation in the microscopic theory is performed
over the first Brillouin zone has no great effect because, at sufficiently low tem-
peratures, there are few magnons with large k values. The third factor, i.e., the
distinction in the dispersion law, is the most important.

The calculation of the magnetization temperature dependence, analogous to that
considered in Section 7.3 but with the use of the dispersion law (7.101) (without
the Zeeman term), results in the following expression (e.g., [214]):

M(0) = M(T) = C3 ;T 4 Cs 3T/ + Cp T + ... (7.111)

The coefficient C3/; is the same as in (7.78), and the consequent coefficients
contain the lattice constant a: the coefficient Cs,, contains it to the second power,
the coefficient C7 5, to the fourth power, and so on. The estimates show that all
higher terms can usually be neglected at 7' S T¢ /2.

7.4.3 Allowance for dipole—dipole interaction and anisotropy

The Hamiltonian of the dipole—dipole interaction can be obtained by replacement
m — 'yh.§' in the classical expression, which is the double sum of the ener-
gies (1.3). This Hamiltonian should be added to the Hamiltonian (7.82). Then,
after the two above-considered Holstein—Primakoff transformations, the entire
Hamiltonian will contain, apart from the terms of the second and fourth order in
operators &, and dy, also terms of third order in these operators. The quadratic
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term of the Hamiltonian will have the form (e.g., [214])

. . 1 o e
H, = h[Akak ax + 5 (Bkaka_k + Bka:afk)] (7.112)
1
A =wi +23 I, [1 - exp(ikr,)] + SwM sin? 6 (7.113)
9
1 . .
B, = WM sin 0r exp(i2¢4 ). (7.114)

Here wy = v4wN~vhS, 0, and ¢ are the vector k angles in the spherical
coordinate system with the axis oriented along the direction of magnetization.
The Hamiltonian (7.112) has no diagonal form (7.84). It means that now the
operators d: and ay are not the operators of magnon creation and annihilation.
One more transition, to new operators é: and é, the third Holstein—Primakoff
transformation [184], also referred to as the Bogolyubov transformation is needed
to bring the Hamiltonian into the diagonal form. This problem is studied in detail
in many books (e.g., [14, 412]). We will cite here only the main result: the

dispersion relation is now
ex = hy/ AL — |Bi|? (7.115)

where Ay and By, are determined by (7.113) and (7.114). The difference between
this dispersion law and expressions (7.9) and (7.10) obtained in the continuum
theory is only in the form of the exchange term. The influence of the long-range
dipole—dipole interaction is the same in both microscopic and continuum theories.

The dipole—dipole interaction, as mentioned above, does not manifest itself for
spin waves with 8, = 0. If 6, # O but |Bx| < Ak, the expression ¢, = hAy,
which is the generalization of expression (7.14), is approximately valid. The
operators ¢ and ¢ differ, in this case, but slightly from a; and ay, so that a;
and a, can be regarded approximately as the magnon creation and annihilation
operators. For most ferromagnets and ferrimagnets |Bi|/x ~ 0.1 K. Therefore,
the considered approximation is valid for thermal magnons, except at very low
temperatures. For coherent spin waves with k£ < 108, this approximation is valid
only at very high frequencies.

The magnetocrystalline anisotropy (the main contribution to which makes the
spin—orbital interaction) can be taken into account only phenomenologically in
the considered microscopic theory based on the Heisenberg model because this
model does not allow for the orbital moments. At not very large k£ values we may
simply replace the term Dk? in the continuum spin-wave dispersion relation by
its microscopic analog. At large k values, the magnetocrystalline anisotropy, as
well as the dipole—dipole interaction, makes a relatively small contribution to the
dispersion relation. In this case, the exchange interaction plays the main role. The
contribution of it, as we have seen (Figure 7.13), is strongly anisotropic.
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7.4.4 Interaction of magnons

The main assumptions of the Holstein—Primakoff theory are: (i) the possibility
to replace the radicals in (7.88) by their series expansions; (ii) the possibility to
neglect all terms in the Hamiltonian on the order higher than two in the operators
&t and d; (or &' and é if the dipole~dipole interaction has been taken into
account); such terms include the terms (7.95), the third-order terms which arise
due to the dipole—dipole interaction, and the higher-order terms in the expansions
of the radicals.

The second assumption is warrantable at low levels of excitation, i.e., for
thermal magnons, at sufficiently low temperatures. The neglected terms represent
the collisions of magnons, which have small probabilities at small numbers of
magnons.

The first assumption gives rise to strong doubt. The replacement of the radicals
by the series removes the ‘automatic’ limitation of the spin-deviation numbers n ¢
ateach lattice point, and this limitation is to be brought into the theory ‘artificially’.
Dyson [104] showed that the allowance for the properties of spin operators Sy,
which leads to the limitation of ny, is equivalent to an additional, kinematic
interaction of the repulsion type. Is should be taken into consideration only at
T <T¢c/2.

According to Dyson, the higher terms in the Hamiltonian, which are discarded
in the Holstein—Primakoff theory, lead to another, dynamic, interaction of the
attraction type. It leads to the correction of the spin-wave dispersion law, which is
more essential than the correction caused by the kinematic interaction but is also
small at low temperatures. The dynamic interaction yields an additional term in
the M (T') dependence, which is proportional to 7 [105]. This term can be also
neglected at T < T¢/2.

Thus, the ‘Holstein-Primakoff magnons’ [Bose-particles with dispersion law
(7.114)] are not the elementary excitations of the Heisenberg ferromagnet. But
they can be approximately regarded as such at a sufficiently low level of excitation
of the spin system.

At higher levels of excitation (for thermal excitations, at higher temperatures)
the elementary excitations differ materially, in their dispersion law and properties
of their creation and annihilation operators, from the Holstein—Primakoff magnons.
However, they can be called magnons or spin waves. The dispersion relations of
such excitations and their contributions to thermodynamic quantities have been
calculated by the use of more potent modern theoretical techniques (e.g., [412,
370, 414]). The only condition of the validity of the spin-wave (magnon) concept
is the relation

ExTr > 2mh. (7.116)

It means that the magnon time of life should be larger than the period of oscillations
which correspond to the magnon energy.
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Magnetic oscillations and waves in
unsaturated ferromagnet

8.1 Oscillations of domain walls

We have supposed until now that the ground state of a ferromagnetic (or a fer-
rimagnetic) body is the uniform magnetization. However, such a state is an
equilibrium state only in sufficiently high magnetic fields or for very small sam-
ples, less than ~ 1 um. In lower fields, in particular, in zero field, samples of
larger dimensions split into magnetic domains. The magnetizations inside the
domains are approximately uniform but vary from one domain to another, so that
in zero field the magnetization averaged over a volume containing many domains
is usually equal to zero. The cause of the rise of domains is that the magnetic
field excited by the sample diminishes materially when the sample is split into
domains, and so, the total energy (or free energy, at T > 0) is minimized in their
presence.

The transition from the magnetization direction in a domain to that in the
neighboring domain occurs gradually but, mainly, in a boundary layer, the so-
called domain wall. The thickness of this layer is usually small as compared with
the dimensions of domains.

This chapter is devoted to high-frequency magnetic processes in such ‘unsat-
urated’ (i.e., split into domains) ferromagnetic samples. In the present section,
the processes caused by oscillations of domain walls are studied, and in the next
section, the processes caused by precession of magnetization inside domains will
be considered.

8.1.1 Domain walls and domain structures

The behavior of magnetization in a domain wall was first studied by Landau
and Lifshitz in their famous paper [241]. Let us consider, following [241], two
neighboring domains in a ferromagnetic uniaxial single crystal and a plane domain
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FIGURE 8.1
Turn of magnetization vectors in the Bloch domain wall.

wall between them (Figure 8.1). At sufficiently large distances from the boundary
(z = 0) the magnetizations M, and M in the domains are directed along two
different easy axes, in the considered case, along the opposite directions of the
z-axis. The energy of magnetocrystalline anisotropy would be minimal if the
magnetization turns abruptly from one of these directions to the other. But the
exchange energy would be large in that case; this energy is smaller the smoother
the turn. Magnetic energy, which is due to the demagnetizing fields in the wall,
becomes equal to zero when the vector M lies in the boundary plane because,
then, no magnetization components perpendicular to the boundary arise. Such
domain walls, which are called Bloch walls, take place in most cases.

The dependence of the magnetization angle # in the Bloch wall on z (Fig-
ure 8.1) can be found by solving the variational problem of minimizing the sum
of anisotropy and exchange energies. Having sclved this problem, Landau and
Lifshitz found [241]

x K, T
cosf tan (MOM 7 > tanh bm (8.1)

where K is the first constant of uniaxial anisotropy, q is the nonuniform exchange

constant (Section 7.1), and
b= 1Moy | L (8.2)
K,

can be named the wall thickness. It is the distance at which the magnetization
turn mainly (by ~ 75%) takes place. The anisotropy and the exchange energies
are equal when (8.1) holds, and the total energy of the domain wall per unit of its
surface is

W, = 2n Mo/ qK| = 2bK;. (8.3)

Analogous calculations in the case of a cubic crystal (e.g., [61]) lead to the values
of b and W of the same order. For YIG at room temperature (|K;| = 5.5 X 10%,
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FIGURE 8.2

Domain structures in a plate of uniaxial ferromagnet.

g=3.76x10"""),b=3.6 x 107> cm, and W, = 0.4 ergcm™2.

In thin films with easy axes of magnetization lying in the plane of the film,
Bloch walls do not correspond to the minimum of total energy because of the
demagnetizing fields and, hence, of the magnetic energy arising due to magne-
tization components normal to the film surface. Then, the Neel walls appear, in
which the magnetization lies in the plane perpendicular to the domain boundary
and parallel to the film surface.

The form and the dimensions of domains depend essentially on the dimensions
of the sample. Consider, €.g., a plate of uniaxial ferromagnet of the thickness [ with
surfaces normal to the easy axis. Suppose that the domains are layers (‘stripes’)
of the width d parallel to this axis [Figure 8.2(a)]. To find the domain width we
have to minimize the sum of the wall energy (8.3) (related to a unit of the plate
surface) and the magnetic energy, which in this case (if related also to a unit of
the plate surface) is of the order of

Wy ~ M2d. (8.4)
The minimization results in
Wil
d= ——. 8.5
o (85)

Near the sample surfaces, more complicated domain structures usually arise.
One of them is shown in Figure 8.2(b). In this case, the domain width is determined
by a compromise between the wall energy and the anisotropy energy in the surface
prisms because the magnetic energy is equal to zero. This results in

2Wil
K,

Such a structure, predicted by Landau and Lifshitz [241], exists in a certain interval

of I. For smaller [ values (in thin films), the simple structure shown in Figure 8.2(a)

d=

(8.6)
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is more advantageous, and for larger [ values, more complicated surface structures,
as shown in Figure 8.2(¢), arise.

The structures similar to that shown in Figure 8.2 can arise in cubic crystals,
as well. If K7 > 0, the magnetization directions in the prisms [Figure 8.2(b)] are
also easy directions, and the domain width d is determined by the compromise
between the wall energy and the magnetoelastic energy (Section 12.1). In the case
of K < 0, the anisotropy energy plays the same role as before, and formula (8.6)
is valid on the order of magnitude. For YIG the domain width d is of the order of
10~2V/1. Inreal crystals, domain structures like those shown in Figures 8.2(b),(c),
and even more complicated ones, arise inside the sample near different defects,
as pores, grain boundaries in polycrystals, etc. In real crystals, the parallel-plane
layered structure usually transforms into a labyrinth structure (e.g., [95]).

One can see from (8.5) or (8.6) that the domain dimension d is proportional
to v/1. Therefore, a sufficiently small sample (! < lp) will not split into domains.
For small samples expression (8.5) should be used, and

W
ME

lo~ (8.7)
For YIG, Iy ~ 105 cm.

When an external magnetic field H, is applied, a new term, the Zeeman en-
ergy (2.15), arises in the energy of the sample. Now the equilibrium is reached
when a mean magnetization M emerges in the direction coinciding or near the
direction of H. This mean magnetization can be formed in two ways [70}: (i) by
the shift of domain walls leading to the growth of the domains in which the mag-
netization makes an acute angle with H, (displacement processes); (ii) by the
turning of the magnetization vectors in domains (rotation processes).

The displacement processes dominate at small external fields and are completed
with the disappearance of the domain structure. The rotation processes continue
after vanishing of the domains and are completed when the magnetization is
directed along H..

The magnetization processes become more complicated when the domain struc-
ture undergoes transformations at certain H, values or at certain temperatures. An
important example is the rise of the so-called bubble domains in films with large
uniaxial anisotropy (K > 2w M¢). In such films, at certain values of the external
magnetic field applied normally to the film surface, the above-discussed layered
(or stripe) domain structure transforms into isolated cylindrical domains with di-
ameters of the order of 1 um. The bubble domains exist in a certain magnetic-field
range from Hyin t0 Hmax Where Hpy is the so-called field of elliptical instability
and Hnay is the collapse field. At H < Hp, the equilibrium structure is the stripe
domains, and at H > Hp,, the uniform magnetization is the equilibrium state. It
should be noted that bubble domains can be generated, annihilated, and moved
in the plane of the film by rather simple means (e.g., [301]). Owing to these
properties, the bubble domains in epitaxial ferrite (usually, with garnet structure)
films are applied in computer memory and signal-processing devices.
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8.1.2 Equation of motion of a domain wall

If the frequency of the ac magnetic field is much less than all the characteristic
frequencies of a ferromagnetic sample, the change of its magnetization is occur-
ring quasistatically. This means that the magnetic state at a certain moment is
determined by the value of the ac magnetic field at the same moment (but, of
course, with impact of the magnetic prehistory of the sample). With the growth
of the frequency of the ac magnetic field, the inertia, first, of the domain-wall
displacement and, then, of the magnetization rotation, begins to influence the
ac magnetization. Proceeding to study the first of these dynamic processes, we
have to derive, first of all, the equation of motion of a domain wall.

Suppose that the steady magnetic field is either absent or small, so that the
domain structure is conserved. The ac magnetic field is assumed not to make
equal angles with the magnetizations of the neighboring domains, otherwise the
displacement processes would not take place.

The displacement of a domain wall is a result of the turns of the magnetization
vectors in the wall. Therefore, the equation of motion of the wall must be based on
the equation of motion of the magnetization (Section 2.1). The effective field in
this equation includes the effective fields of anisotropy and of exchange interaction,
as well as the demagnetizing field caused by the variation of magnetization in the
wall. Such theory was developed by Landau and Lifshitz [241] for the case of a
uniaxial ferromagnet and the magnetic field applied in the direction of the easy
axis, i.e., along the z-axis in Figure 8.1. The dissipative term in the equation
of motion was taken as in (1.61). It was shown that the equation of motion has
a solution depending on coordinate z (Figure 8.1) and time in the combination
(xz — vt) where

_ MoH

v= (8.8)
p

» [K

= 8.9)
YMo\ ¢ (

p
This solution corresponds to the displacement of the wall without its deformation.
Expression (8.8) written in the form

— = MoyH (8.10)

can be regarded as an equation of motion of the domain wall. The right-hand side
of (8.10) is the force acting on the wall.

Becker {43] and Doring [103] later showed that it is necessary to add an elastic
force and an inertial term to the equation of motion (8.10). Then this equation
takes the form

d2z dz
W — = MyH 8.11
mwaa TP +(z 0 (8.11)




220 8 Magnetic oscillations and waves in unsaturated ferromagnet

which is the equation of a harmonic oscillator. The appearance of the inertial term
myd?z/dt? in (8.11) is associated with kinetic energy of the moving wall. It was
shown [43] that the effective mass (per unit surface of the wall) is

1
where b is the wall thickness (8.2). Expression (8.12) is also valid for cubic
crystals. For YIG, b = 3.6 x 1075 cm and m,, ~ 10~'® g cm~2.

The presence of the term (z in (8.11) is caused by the fact that, in a real crystal,
the domain wall at equilibrium is located in a ‘potential well’, and when it moves
from this equilibrium position, an elastic force —( x arises. The coefficient ¢ can
be related to the initial static susceptibility x; = M /Hy where M is the mean
magnetization in a small steady field Hy caused by the displacement process.
This magnetization is a result of the shifts of the neighboring walls in opposite
directions by the distance z, so that

M = 2—‘”M0 (8.13)
d
where d is the domain width. Equation (8.11) gives in the static case (z = MoH,
and taking (8.13) into account, we get
2M}
¢==L (8.14)
xid

8.1.3 Dynamic susceptibility

Solving equation (8.11) with a harmonic ac field hexp(iwt) and passing then
from x to the mean ac magnetization 7 exp(iwt), according to (8.13), we get the
dynamic (high-frequency) susceptibility caused by the domain-wall displacement

— 2 —1
m w I w
=—=yi[l-——+i——— . 8.15
Xl h Xi ( w%w + le U-)Ow) ( )
Here,
wow = 1] - (8.16)
My
is the eigenfrequency and
Qu= Vermw (8.17)

is the quality factor. The dependence x| (w) is of the resonance type if Q,, > 1
and of the relaxation type if Q,, < 1 (Figure 8.3).
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Change of the scale

FIGURE 8.3
Magnetic spectra caused by domain-wall oscillations (schematically): (a) of resonance-type
(Qw = 5) and (b) of relaxation-type (Qw = 0.2).

From (8.16), taking into account (8.12), (8.14), (8.2), (8.6), and (8.3), we obtain

s/af 4 178
wow = TMy/ (E) M2 (8.18)

When this expression is used to estimate the value of wy, the sample dimension
must be taken for [ in the case of a single crystal, and the mean grain dimen-
sion (usually 1073—~107* cm), in the case of a polycrystal. Then, for the YIG
polycrystal (with x; ~ 10), we get fow = wow/2m = 25-45 MHz, and for the
cobalt-ferrite polycrystal (xi ~ 3), fow = 200-300 MHz. For single crystals, the
fow values will be several times greater.

From (8.16) and (8.17), with regard to (8.9), (8.12), and (8.2), a simple formula
for the resonance-line width follows:

Wow
Awy, = —— = YA 8.19
0 v (8.19)

However, trying to estimate the value of A in this formula, we come across some
difficulties. The ferromagnetic-resonance experiments, commonly used to get this
value, are performed generally at higher frequencies. Taking the A value obtained
by Galt [132] from the direct measurement of domain-wall velocity in a nickel-
ferrite single crystal, we get A f, = 35 MHz. An estimate of fo in a polycrystal
of this ferrite yields, according to (8.18), fow = 280 MHz. So, in this case, as
well as in many others, the estimates result in Qv > 1, i.e., in the resonance-type
frequency dependence of x .

The frequency dependences of the real and imaginary parts of the permeabil-
ity in the absence of a steady magnetic field are called magnetic spectra. The
experimental magnetic spectrum for the cobalt-ferrite single crystal is shown in
Figure 8.4(a). It is determined, certainly, by the domain-wall oscillations be-
cause the eigenfrequencies of the rotation process (Section 8.2) should be much
higher in this ferrite with very large anisotropy. The experimental values of
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FIGURE 84

Magnetic spectra (a) of single-crystal cobalt ferrite [312] and (b) of polycrystal nickel
ferrite [288] at room temperature. The region of domain-wall oscillations is denoted by I
and the region of natural ferromagnetic resonance, by II.

fow = 360 MHz and A f,, = 25 MHz [Figure 8.4(a)] agree with the estimates
using the formulae (8.18) and (8.19).

As distinct from single crystals, narrow regions of resonance variation of 1’ and
"' caused by domain-wall oscillations are never observed in polycrystals. The
reason for this is the spread in forms, dimensions, and orientations of domains. The
magnetic spectra caused by domain-wall oscillations are very broad in polycrystals
and often overlap with the regions of resonance ' and p”’ variation [Figure 8.4(b)]
caused by rotation processes, which will be considered in the next section.

8.2 Ferromagnetic resonance in samples with domain structure

The ac magnetizations in the neighboring domains are strongly coupled, analo-
gously, in some sense, to the ac sublattice magnetizations in antiferromagnets and
ferrimagnets (Section 3.1). An important difference, however, is that in an antifer-
romagnet or ferrimagnet the sublattices are ‘mixed’ on the microscopic level and
the coupling is performed by the exchange interaction. Domains, on the contrary,
are macroscopic regions coupled mainly by the demagnetizing fields, which arise
at the domain boundaries and, as we will see below, at the sample surfaces. We
will study in this section the coupled oscillations of the domain magnetizations,
i.e., the ferromagnetic resonance in the presence of domains.

The equations of motion for the magnetizations in the domains have the same
form (3.3) as for the sublattice magnetizations, but 3 = 1,2, ... is now the number
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of a group of identical domains. The mean magnetization is

M=) n,M; (8.20)
j

where 7; = V;/ 3. V; is the relative volume occupied by the domains of the jth
group. The effective field acting on the magnetization M in the domains of the
Jth group can be written, analogously to (2.7), in the form

3

1 ou 9 ou
Hets = n; | oM, " pz_; 1, (3(3Mj/3fp)) ' (8.21)
Here, U is the energy density per unit volume of the entire sample (which is the
reason for the factor 1/7; arising in this formula). The energy U must include
all kinds of energy associated with domains: the domain-wall energy and the
magnetic energy caused by the demagnetizing fields.

Let us consider the energy of the demagnetizing fields at the plane boundary of
two domains. The condition of the continuity of the magnetic induction component
normal to the domain boundary is

H1n0 - Hzn() = —4r (M]’no — Mzno) (8.22)

where the indices 1 and 2 correspond to the neighboring domains, and ny is a unit
normal to the boundary. In the case when the domains are infinite plane layers of
equal thickness, the demagnetizing fields satisfying the conditions (8.22) are

Hyp o =227 (M, — Man)ng (8.23)
where M| ;. are the normal components of M 5. The energy of these fields is
1
81
The demagnetizing fields for more complicated domain structures were found by
solving the appropriate magnetostatic problems (425, 194].

A rigorous theory of magnetization oscillations in an unsaturated sample can
be developed only under some simple assumption as to the domain structure.
Nagamiya [295] was the first to work out such a theory for a disk of tetragonal
ferromagnet. The case of a spheroid of uniaxial ferromagnet was investigated
by Smit and Beljers [371], and the ferromagnetic resonance in a sphere of cubic
ferromagnet was studied by Artman [23]. In all these theories a regular and simple
domain structure consisting of thin parallel-plane layers of equal thickness, was
assumed. Domain walls were regarded as infinitely thin and immovable, and
their energy was not taken into account. The domain walls can be assumed to be
immovable (i.e., the domain structure does not change when the external steady

magnetic field is applied) if the field makes equal angles with the magnetizations
of both domain groups (as in Figure 8.5). Then, the magnetizing of the sample

T
Umw= H12v11,2=§(M|n—M2n)2- (8.24)
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FIGURE 8.5

Ferromagnetic resonance in an unsaturated sphere of a uniaxial ferromagnet (X; > 0)
[371]: (a) accepted domain structure, (b) eigenfrequencies vs external steady magnetic
field. Vectors Mo and M lie in the yz plane, Ha = (47 /3) Mo.

is achieved only by the turning of magnetization vectors in the domains, i.e., by
rotation process. This condition was satisfied in all mentioned theories.

8.2.1 Ellipsoid of uniaxial ferromagnet

Assume, according to [371], that the easy axis of anisotropy coincides with one
of the ellipsoid axes and the steady magnetic field is perpendicular to this axis
(Figure 8.5). Then, in compliance with the above-nientioned condition, the domain
structure shown in this figure will not change with the growth of the steady
field H. ¢, and the directions of M; and M, will approach the H. direction until
the domain structure disappears at H.o = H. The ac magnetic field lies in the
plane perpendicular to the anisotropy axis (Figure 8.5).

The following energy terms are taken into account: the Zeeman energy Uz, the
anisotropy energy U,,, and the magnetic energies associated with the demagnetiz-
ing fields both at the ellipsoid surface (Ups.1) and at the domain boundaries (Upy w).
As the domain widths are equal (1) = 7, = 1/2), the Zeeman energy is

1
Uz = 5 (M + M) [H.o + hexp(iwt)] . (8:25)

The anisotropy energy, according to (2.40), can be written in the form

Ua“:K‘( TaME 2 M

Assuming the domain width to be much less than the sample dimensions, we can
neglect the magnetization nonuniformity when calculating Uz 1. Then, according
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10 (2.16),
1 .
Una =3 (N. M2 + N, M2 + N, M?) (8.27)

where M, , . are the components of M = (M, + M,)/2 and N, , , are the de-
magnetization factors of the sample. The energy Ujy  is written in the form (8.24)
with M],zn = Ml,zy-

The equations of motion of the domain magnetizations have the form (3.3).
Following [371], we will use the method of spherical coordinates (Section 2.1)
and write the equations of motion, by analogy with (2.20)—but without dissipation
terms—in the form

89172 _ 2’7 oU acplyz _ 2'y oUu
Ot Mysin8 2 9¢1 2 ot Mpsinb,, 08, ,

where 617 and ¢ » are the polar and the azimuthal angles of M) ».

First of all, we have to find the equilibrium values (6 2)o and (¢;,2)o of these
angles. The equilibrium conditions are the extentions of conditions (2.22). Restrict
ourselves, for simplicity, to the case of ¢y = 7/2 (Figure 8.5); as it has been
already emphasized, the condition g = 7 /2 is to be satisfied to exclude the
domain-wall displacement. Then, from symmetry considerations,

(8.28)

T
(p1)o = (w2)o = 3 (81)0o = T — (62)0 = bp. (8.29)
The angle 6y is found from the condition U /36, = 0 at §; = 0, which yields
. H,
sinfy = HSO at H.o < H;
0o = g at Heo> H, (8.30)

where H; = 2HA | + Ny M and, as before, Ha ) = K1 /M.

Now we have to linearize equations (8.28). Taking 8, » = () 2)o+a1 2 exp(iwt)
and ¢12 = (1,2)0 + B1,2 exp(iwt), we expand the derivatives in (8.28) into power
series in ac components of 6§, and ;. We restrict ourselves to the first two
terms of the series and take into account the equilibrium conditions. In the
obtained four linear equations, we pass to the new variables a* = (o) % a3)/2
and 8% = (B3, £ 3,)/2. In these variables, we get two independent systems:

2 (Uee + Ue,az) at —itwpt =0
iwat +2 (Upp + Uyyyp,) BT = RMpsinfycos oy, (8.31)

2 (Ugo - Ugloz) a” —1€wB™ = hMycosbysinpy,
wa™ +2(Uuy — Uyyyp,) B = 0. (8.32)

Here Ugy = Uglgl = U9292 and U‘P‘P = U‘PHPI = Uy (Ugl()], Uglgz, etc., are
the second derivatives of the energy U with respect to the corresponding angles),




226 8 Magnetic oscillations and waves in unsaturated ferromagnet

& = Mpsinby/+, and ), is the angle that the ac field h makes with the domain
boundaries (Figure 8.5).

The first mode [which corresponds to system (8.31)] is excited by the h compo-
nent perpendicular to H,, and the second mode [corresponding to system (8.32)]
is excited by the h component parallel to H.o. The eigenfrequencies of these
modes, w and w), are obtained by equalizing to zero the determinants of (8.31)
and (8.32). Taking into account expressions (8.24)—(8.27) for the terms of the
energy U, we get [371]

2
(‘i)_l_) = (2Ha1 + 47 Mp) RQHa1 + N Mp)

Y

2H N, M) |2H, -(Nz + Ny)M

_( Al+ 0) [ Al ( 31) 0] HezO (833)
2Ha1 + N, Mo
2

(4)“ 2HA] 2
L) =2HA; (2H N,My) — ————————+H_,. 8.34
(7> Al( A1t Vy 0) 2HA1+NyM0 e0 ( )

The curves of w,; and w) vs Heo computed with (8.33) and (8.34) are plotted,
in the case of a sphere, in Figure 8.5. The existence of domains leads, first, to
the fact that the frequency w, of the mode excited by the transverse (with respect
to H.g) ac field does not go to zero at any value of H.o. Second, a mode arises
that is excited by the ac field parallel to Heo. The frequencies w) and wj, in
the absence of H.y, i.e., the frequencies of the so-called ‘natural’ ferromagnetic
resonance, are finite and different.

In a more general case of an arbitrary value of the angle ¢y, two modes are
excited at any orientation of h [425]. The eigenfrequencies of these modes, at
all values of Heg, lie between the above-considered frequencies w and wj and
coincide with them at H.o = 0 and H.o = H;.

8.2.2 Sphere of cubic ferromagnet

Consider, following [23], an unsaturated single-crystal sphere of a cubic ferro-
magnet, suppose the field H to be directed along the {110} axis, and take into
account only the first constant K| of the cubic anisotropy. In this case, the layered
domain structure with domains of equal width are conserved in certain intervals
of Heg values. If K; > 0, the equilibrium magnetizations My and M, at
H.o = 0, are directed along the easy axes [100] and [010] (Figure 8.6). With
growing H, o these magnetizations, lying in the (001) plane, approach the H.
direction. If K} < 0, the magnetizations M ¢ and M, are directed, at Heo = 0,
along the easy axes [111] and [111]. With growing H,¢, the magnetizations M o
and Mo, lying in the (110) plane, approach the H,q direction.

The calculation, similar to the above-considered, shows that, for a cubic crystal,
two oscillation modes take place, as well [23]. One mode, with frequency w ,
is excited by the ac magnetic field perpendicular to Heg, and the other, with
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FIGURE 8.6

Domain structures accepted in the calculation of the ferromagnetic-resonance conditions
in an unsaturated sphere of a cubic ferromagnet [23]. Vectors M|y and M,y lie in the
plane (001) for K > 0 and in the plane (110) for K| < 0.
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FIGURE 8.7

Ferromagnetic-resonance eigenfrequencies in an unsaturated sphere of a cubic ferromag-
net [23]. Accepted domain structure is shown in Figure 8.6. Ha, = (47/3)M, for
K > 0,and |Ha:1| = (1/2)Mp for K\ < 0. Dashed lines indicate the regions in which
the accepted domain structure exists.

frequency w), is excited by the field parallel to H,o. The dependences of both
frequencies on the steady magnetic field H are shown in Figure 8.7.

In this section we have regarded the domain walls as immovable. However,
the magnetization oscillations within domains and the domain-wall oscillations,
more rigorously, should be considered simultaneously [425]. Three eigenmodes
then take place. Their frequencies differ most strongly from the frequencies of the
magnetization oscillations in domains (considered in this section) and from the
frequencies of the domain-wall oscillations (Section 8.1) when these unperturbed
frequencies approach each other.
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FIGURE 8.8

Results of experimental investigation of ferromagnetic resonance in an unsaturated YIG
single-crystal sphere [269]. (a) Dependence of resonance frequency on an external steady
magnetic field; bold lines represent values calculated according to [23] (Figure 8.7), circles
denote the experimental data. (b) Absorption curves at frequencies shown in (a); D is the
transmission coefficient through a resonator containing the YIG sphere.

The susceptibility tensor of a ferromagnetic sample with domain structure is
defined by the expression

m = x°h (8.35)

where 77 is the ac magnetization averaged over all domains and h is the external
ac magnetic field. It should be noted that this definition makes sense only under
the condition that the domain widths are small as compared with both the sample
dimensions and the electromagnetic wavelength. If this condition is satisfied, ™
and, hence, the tensor X can be found by solving the equations of motion, e.g.,
(8.31) and (8.32) containing the external field h. As distinct from the susceptibility
tensor of a sample magnetized to saturation, the tensor ; will have, in general,
all nine components passing through resonance at the eigenfrequencies of the
unsaturated sample.

In both considered examples the domain structure was regular, i.e., it contained
a small number of groups of equivalent domains (two groups in these examples).

In this case, the x¢ components obtained by solving the coupled equations of
motion for these groups and, hence, the amplitudes and widths of ferromagnetic
resonance curves corresponding to each coupled mode should be of the same
order of magnitude as for a sample magnetized to saturation. This is convincingly
illustrated by Figure 8.8.

But if the domain structure is irregular, contains many domains of different
dimensions and shapes (as is always the case in polycrystals), then a single
but ‘nonuniformly broadened’ and distorted resonance curve is observed. The
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irregularity of the domain structure is the main reason for the fact that the region
of the “natural’ (in the absence of a steady magnetic field) ferromagnetic resonance
in magnetic spectra of polycrystals is usually very broad (as, e.g., in Figure 8.4).
This region sometimes overlaps with the region of domain-wall oscillations [288].

The boundaries of the natural ferromagnetic-resonance region in polycrystals
can be estimated in the following way. One can see from (8.33) and (8.34) that
w1 and w) at Heo = O depend on the demagnetization factors N, and N,, in
the considered case, of the polycrystal grains. Allowing for arbitrary forms and
orientations of the grains, we see that these factors can vary from 0 to 4, and
therefore,

Wmin = 27HA Wmax = ¥ 2Ha 1 + 47 M) . (8.36)

This estimate was first made by Polder and Smit [320]. The value of Wnax
is very important because it is the borderline frequency of the so-called initial
losses in ferrites: at frequencies less than wmay, large losses caused by the natural
ferromagnetic resonance prevent the use of the material in devices operating at
zero or small steady magnetic fields.

8.2.3 Nonuniform modes in unsaturated samples

Rigorous analysis of nonuniform modes (Walker’s oscillations and spin waves)
in samples with domain structure must be based on the simultaneous solution of
the equations of motion for all domain groups and the electrodynamic equations,
with regard to all boundary conditions. They include the conditions at the sample
surface and at the domain boundaries, assuming the domain-wall thickness to be
small as compared with the domain dimensions. Even with this assumption and
for simple regular domain structures, like the above-considered, the solution leads
to complicated integro-differential equations [38]. A rather simple solution is
possible only when the wavelength of the nonuniform mode is much larger than
the domain dimensions. Then, the problem can be solved in the same way as for
the sample without domains but using the averaged susceptibility Y.

The nonexchange oscillation modes found in such way are of two types. The
modes of the first type are excited by the transverse (with respect to Heo) ac mag-
netic field and transform into conventional Walker’s modes at H., ¢ higher than the
saturation field. The modes of the second type excited by the longitudinal ac field
have no analog in saturated samples.

An approximate analysis of spin waves in the presence of domain structure is
possible under one of the following conditions:

2 2 2
(1) %»d,b (2) %~d>>b 3) %<<d>>b. (8.37)

Here k is the wave number of the spin wave, d is the domain width, and b is the
domain-wall thickness.
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In the first case, an averaged tensor X° can be used. As d ~ 1 um and, hence,
k < 10°, the exchange interaction can be neglected for many substances, e.g., for
YIG, and the waves are the nonexchange magnetostatic waves (Section 6.2).

In the second case, the domain-wall energy can be neglected, as in the case (1),
but the averaged susceptibility tensor cannot be used. The solutions of the mag-
netostatic problem for neighboring domains must be found and bound with each
other by the conditions at the domain boundaries.

Consider, for example, nonexchange magnetostatic waves in a plate of thick-
ness ! with an easy axis of anisotropy perpendicular to the plate surface. Suppose
that a simple layered domain structure [Figure 8.2(a)] takes place. The potential
in the nth domain can be written in the form

¥n = (A, cosk,z + B, sink,2) (Azn €08 kzna + Byn sin konx) exp(—ky)

(8.38)
[compare with (6.60)]. The values of A;, B;, and k., must be the same in all
domains, otherwise it would be impossible to satisfy the boundary conditions at
domain boundaries. In the expressions for the potential outside the plate, the
factors depending on z and y should be the same as in (8.38) in order to satisfy
the boundary conditions at the plate surfaces. The factors depending on z in these
expressions must be: Cexp(—k.0z) at z > I and D exp(k.0z) at z < 0. The
equation for k, which follows from the boundary conditions at the plate surfaces,
will differ from (6.31) only by the replacement ¢ — [. Substitution of (8.38)
and the potential outside the plate, respectively, into the Walker and the Laplace
equations results in the expressions

k2 = —p (K2, + k%) K2 =k, + Kk (8.39)

from which one can see that the k., values in all domains are equal.

Consider now the simplest modes with the same potentials in all domains
magnetized in the same direction. Then, it is sufficient to take into account
the conditions at the boundary of a domain with its neighbor. These conditions
are satisfied [69], analogously to the case of a plate magnetized to saturation
(Section 6.2), either under the condition (6.36) (but now d is the domain width)
or under the condition uk2 + p.k? = 0. The first possibility corresponds to
volume waves, with trigonometric z dependence. In the second case, the =
dependence is hyperbolic (k2 < 0), i.e., a surface wave propagates along the
domain boundary [287, 85]. It should be emphasized that the considered solution
is not valid if the condition 27 /k >> b is not satisfied, so that the domain wall
cannot be regarded as infinitely thin.

For sufficiently large k values, i.e., in the third case in (8.37), it is possible to
assume approximately, paying no attention to domain walls, that in each domain
there exist independent spin waves with the dispersion laws as in the unbounded
medium with the magnetization of the domain. In Section 10.3 it will be shown
that such approximation is adequate in the study of parametric excitation of spin
waves in unsaturated samples.
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Nonlinear oscillations of magnetization

L

9.1 Ferromagnetic resonance in strong alternating fields

In all preceding chapters we dealt with linear relations between ac components
of magnetization and magnetic field, which were found by solving the linearized
equations of motion, e.g., (1.66) or (2.18). But the initial equation of motion for
the magnetization, the Landau-Lifshitz equation (2.6), is nonlinear. Hence, at
sufficiently high amplitudes of the ac magnetic field and magnetization, the linear
relation between them gets broken and nonlinear effects arise. In this chapter
some of these effects will be studied.

9.1.1 Rigorous solution of equation of motion

The Landau-Lifshitz equation can be solved rigorously, at arbitrary amplitudes of

the ac field, only in a few particular cases. The simplest case is the magnetization

precession in the ac field with circular polarization. This problem was solved

by Skrotskii and Alimov [364]. The solution depends materially (as distinct from

the linear case) on the form of a dissipative term in the equation of motion. Con-

sider first equation (1.64) with a dissipative term in the Bloch-Bloembergen form.
Assume in (1.64) that

H=Hy+h. (9.1)

where Hy = 2z, Hj is the internal steady field and k.. is the transverse ac field with
right-hand circular polarization. Now, in studying nonlinear processes, we have to
do away with the complex-amplitude method (in any case, in its simple form used
in previous chapters) and use the instantaneous values of all ac quantities. So,

h = ho (g coswt + yp sinwt) . 9.2)
From symmetry considerations, we may seek the solution in the form

M = mg [xo cos(wt + ®) + yosin(wt + @) + zoM.] . (9.3)

231
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Substituting (9.1)-(9.3) into (1.64) and projecting the obtained equation onto the
coordinate axes, we get three equations for mo, ¢, and M. Solving them, we find
M, and the nonlinear susceptibility, which can be defined as

mo .
X+n = 3o exp(ip). (9:4)
The values of M, and of the imaginary part of x » at resonance (w = vHy) are
2p2 —
vhg\ ™! :
Mz[es = M()(l + '—29> X: nres = leres~ (95)
wy Wr

The resonance nonlinear susceptibility is proportional to M. res, and both quantities
decrease with the growth of ho (Figure 9.1, curves B).

The solution of equation (1.62) with the dissipative term in the Gilbert form
leads to different results [364] (Figure 9.1, curves G):

2p2\1/2 M, aw
~°h _ Mo
M, s = Mo(l - ﬁ) X+nres = _aT at ho < —’Y—
Mo aw
M,wes = 0 X+nres = %‘ at h() > T (9.6)

In (9.5) and (9.6) ho is the amplitude of the internal ac magnetic field. But ex-
pressions (9.6) are valid strictly, and expressions (9.5) are valid approximately for
a sphere, t00, if hg is the amplitude of the external field. Actually, the equation of
motion for the magnetization of a small ellipsoid (with the Gilbert-type dissipative
term) has the form

oM oM

hgd (87
S =M X (Heo 4 b — NM) + oM X (9.7)

where Heo and he.. are the steady and the ac external fields. For a sphere, N is
a scalar and the demagnetizing field NM drops out of the equation. Then, (9.7)
coincides with (1.62) after the replacement of the external fields by the internal
ones. This fact was pointed out in Section 1.5 for linearized equations, but it takes
place in the case of strong ac fields, too.

Different behavior of the ac magnetization for different forms of the dissipative
term results in, seemingly, the possibility to favor one or the other form using the
experiments on ferromagnetic resonance in strong ac fields. But this possibility
usually cannot be realized because another nonlinear process, the parametric
excitation of spin waves (Chapter 10), arises at field amplitudes much less than
aw/~ and prevents the manifestation of the above-considered nonlinear process.

A strict solution of the nonlinear equation of motion was found, as well, for an
ellipsoid of revolution (spheroid) in a steady field parallel to the axis of revolution
and a circularly polarized ac field. The solution, in this case, can also be sought
in the form of (9.3). But the nonlinear eigenfrequency won, now has the form

won = ¥ [Heo + (N1 — N;) M;] (9-8)
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FIGURE 9.1

Dependence of M, and of the nonlinear susceptibility at resonance on ac field amplitude,
found by solving the equations of motion of magnetization with dissipative terms in the
Bloch—Bloembergen form (curves B) and in the Gilbert form (curves G). The field hgar =
wr /7 in the case B, and hgyy = aw/7 in the case G. In both cases hy, — AH/2 where AH
is the width of the linear resonance curve.
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FIGURE 9.2

Solutions of the equation of motion of magnetization for an oblate spheroid (N, — N, > 0)
at different ac field amplitudes (schematically). Arrows show the directions of the steady-
magnetic-field change.

which differs from the linear eigenfrequency by the substitution of M, for the
steady magnetization M. According to (9.5) or (9.6), M, decreases with grow-
ing mg. Therefore, the eigenfrequency increases with the growth of mgy when
N, > N, (i.e., for an oblate spheroid) and decreases when N, < Ny (e,
for a prolate spheroid). The amplitude my, in its turn, depends on the eigenfre-
quency won. Such self-consistent dependences can lead to instability.

Assume, e.g., that, in the case of a disk, at the frequency of the ac field w > wq,,
the amplitude myq has accidentally grown. Then, M, will decrease and wyq, will
increase and, so, come nearer to w. This will lead to the further growth of my,
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and so on, until wo, reaches w. The problem was solved strictly by Skrotskii and
Alimov [364]. They showed that the instability results in a nonunique dependence
of mg and M, onw or Hep in certain intervals of these parameters (Figure 9.2).
The nonuniqueness arises when the amplitude of the ac magnetic field with circular
polarization exceeds the critical value he; depending on the sample shape. For a
sphere, he, = 00. For a thin disk, the critical field is the lowest:

1(AH)!
2 \/47rM0 '
For a YIG single crystal (AH =~ 0.5 0¢), hermin = 0.004 Oe, i.e., about 50 times

smaller than the field AH/2, at which, as we have seen, the saturation of ferro-
magnetic resonance in a sphere takes place.

o)

(9.9)

hcr min

It is easy to make sure that the instabilities occur at the middle parts of the
M, and mg vs wp curves (Figure 9.2). Asa result, the resonance curves (i.e., the
dependences of the absorbed power on w or H,) turn out to be non-Lorentz, and
hysteresis takes place. In electrodynamic systems containing nonspherical ferrite
samples, low-frequency self-oscillations can arise at sufficiently high microwave-
power levels.

Weiss [438] was the first to observe such nonlinear phenomena in ferrite disks.
Anderson and Suhl [19] explained them using an approximate solution of the
equation of motion, the obtained h value differs from the exact value (9.9) only
by a factor of the order of unity. It is worth noting that the work [19] was the
first step to Suhl’s theory [391, 392] of the parametric excitation of spin waves
(Chapter 10).

The instability in the nonlinear motion of the magnetization at high power
levels can be caused not only by the shape anisotropy of the sample but also by
other kinds of anisotropy (e.g., by the magnetocrystalline anisotropy) that lead to
the dependence of the eigenfrequency on the ac magnetization amplitude. Such
dependence and, hence, the instability can arise also because of the change of the
anisotropy constants due to the heating of the sample by the ac field. This effect
was explained by Damon [81].

9.1.2 Approximate methods

One of the methods of approximate analysis of nonlinear magnetization oscilla-
tions uses the conservation of the vector M length:

M2+ M2+ M? = M} (9.10)

whence, in the case of My, My, < Mo, it follows that

1 2 2
. = - — . 9.11
M, = Mo~ 72 (M; + M2) (9.11)
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Then, we can use the method of successive approximations and find M, and My,
in the first approximation, from the linear theory. For an isotropic ferromagnet

M, =Re [(xh, + iXahy) exp(iwt)]
M, =Re [(—ixahz + xhy) exp(iwt)] . (9.12)

Here h; and h, are complex amplitudes of the ac magnetic field: of the internal
field if x and x, are components of the linear susceptibility tensor, or of the
external ac field if x and x, are components of the external susceptibility of the
sample (Section 1.5). Substituting h, = heoand hy = hyo exp(ip) (where kg
and hy o are real quantities) into (9.12) and using (9.11), we find

MZ=M0—5MZ+M,,2 (9.13)

oM, = —_ [(Ix + Ixal?) (B2o + h24)

4 M,
—4sing (x'x, + x"x7%) hzohyo] (9.14)
1
M,y = YA (X =x"2= x4 x"?) [h2 g cos 2wt + hy g cos(2wt + ©)]
0
+2 (X'x" = xoxil) [h2 g sin 2wt + hlosin(2wt + )] } . (9.15)

The quantity 6 M, represents the effect of detection of the magnetization oscil-
lations. One can see from (9.14) that this effect takes place at any polarization of
the ac field. For the linear polarization of this field (when, e.g., hyo = 0)

1
M, = — (Ix|* + |xa]?) B2 9.16
and for the right-hand circular polarization (hyo = hyo = hg, p = —7 /2)
1
M, = — o|*h2. 9.17
M 2M0|X+X [“ho 9.17)

At resonance [}’ = x, = 0, ¥ = x! = YMo/(2aw)], expression (9.17)
coincides with the expression that follows from (9.6) in the case of small ampli-
tude hg. It should be noted that the O M, value following from (9.5) is twice as
large as (9.17). This results from the fact that equation (1.62), from which (9.5)
follows, does not ensure, in contrast to equation (1.64), the conservation of the
vector M length.

The considered effect of detection can be observed by two methods (Figure 9.3).
One of them, used by Bloembergen and Wang [57], is the recording of the emf
induced in a coil adjacent to the sample. Another method is the recording of the
magnetostrictive deformation of the sample by using the piezoelectric effect in a
quartz or ferroelectric sample fastened to the ferromagnetic sample [190]. The
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Ferrite detectors using (a) magnetic induction and (b) magnetostriction [190].

sensitivity of such ferrite detectors is much less than the sensitivity of commonly
used semiconductor detectors. But the ferrite detector, which uses the volume
effect, is more resistant to high power, repeated temperature changes, and radiation
damage.

The harmonic functions with frequency 2w appear linearly in (9.15); hence, we
can use now the method of complex amplitudes. Applying the formulae for x and
Xa» Which follow from (1.39) after the replacement (1.68), we obtain from (9.15)
a very simple expression for the complex amplitude of M, :

YXa
Mo = —% (h2 + 12). (9.18)

Expressions (9.15) and (9.18) represent the effect of frequency doubling. It follows
from (9.18) that this effect is absent if the field is circularly polarized, provided
that the tensor ; or }_('e has cylindrical symmetry, which has been assumed in
deriving (9.18).

The above-considered approximate method has essential limitations. First, the
vector M length conservation holds, as was already mentioned, not for every form
of the dissipative term in the equation of motion and, as we will see in Chapter 11,
not for all relaxation processes. Second, using this method, we can find only the
nonlinear terms of the longitudinal magnetization component M. Now we are
going to discuss a more universal method of successive approximations [153]. We
seek the solution of the equation of motion in the form

M=My+M®D 4+ M+ (9.19)

and assume that My > M > M® .. Limiting ourselves to the uniform
magnetization oscillations, we write the effective field (Section 2.1) as

Hi=Ho+h. - NM (9.20)

where Hy and h.. are the given magnetic fields (Ho >> h.) and N is the entire
tensor of demagnetization factors, including the demagnetization factors of all
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kinds of anisotropy.

Substitute now (9.19) and (9.20) into the equation of motion (2.6). To the zero
approximation, neglecting M), M@ . and h., we obtain the equilibrium
condition (1.86) (with the replacement of H, by Hy). To the first approximation,
retaining terms of the first order in M(!) and h.. and taking into account the
equilibrium condition, we get the linearized equation

(n
ajawt + M

D X (H()—X[MO) —’)’Mo X KIM(I)
+ w,(l Yo N )M(” = —vYMjy X h +wxoh.  (9.21)

where xo = Mo/|Hy — NMjy|. To the second approximation, retaining terms
of the second order and taking into account the equilibrium condition and equa-
tion (9.21), we obtain the equation for M (2, Proceeding with this process, we
make sure that the nth-order magnetization (n > 2) satisfies the recurrent equation

OM ™) n e .
5=+ > MY x H ’°)+w,(1+x0N)M(”)=o. (9.22)
k

=0

The effective fields He(f"hk) in this equation have the following form:
HY=Hy~ NMy, H) =h. - NMO, BP = _Np® (5 > 2). (9.23)

The considered method can be used either to calculate the magnetization of
an ellipsoid in a given external field k., or to find the magnetization in a given
interr}gl field h.. And if in the latter case the substance is isotropic, we must
take N= 0 in all expressions (9.23) but the first one. Then equations (9.22) are
simplified:

OM™)

En + M x Hy + WM™ = M) x h (9.24)

where Hy = H.q — N M is the internal steady field. The magnetization M (%)
now depends not on all magnetizations of lower order but on M, and M1
only. It should be noted that equations (9.24) are also valid for a sphere if A is
the external ac field and H is replaced by the external steady field H..

L e

9.2 Harmonic generation and frequency conversion

The approximate methods considered above will be applied in this section to
the study of nonlinear effects in which magnetization components arise with
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frequencies other than the frequency of the external field. The frequency doubling,
mentioned in the previous section, is one of such effects.

9.2.1 Frequency doubling

Consider first in more detail the component M », for which expressions (9.15)
and (9.18) were already found. When the ac magnetic field is circularly polarized
and tensor x has cylindrical symmetry, the tip of vector M moves along the
circular trajectory, and no ac component of M, appears (as well as no transverse
M components with frequencies other than the frequency w of the ac field). But
if the system has no cylindrical symmetry or the ac field is not circularly polarized,
the M, component with frequency 2w arises, as shown in Figure 9.4. One can see
from the figure that the amplitude of this component

~ m2 o — mio
Myo = 4M, (9.25)
where m ¢ and my ¢ are real (not complex) amplitudes of M, and M. Itis easy
to make sure that (9.25) is equivalent to (9.18).
The difference between m. o and myo, which determines the effectiveness of
frequency doubling, can be characterized by the ellipticity (1.101), and expres-
sion (9.25) can be written as

2
Mzo

4M

E. (9.26)

mz2 =

Small ellipticity of ac magnetization arises in a sample with cylindrical symme-
try made of isotropic ferrite if the polarization of the ac field is not circular. For
the linear polarization of the field, the polarization of magnetization is maximal
and, at resonance, is equal to 2a where a is the Gilbert dissipation parameter.
Then, according to (9.24) and (1.117),

’72M0h(2)

Mz2res = 8aw2 -

(9.27)

(ho is here the amplitude of a linearly polarized external field).

The ellipticity of the magnetization is much larger in samples with transverse
demagnetization factors not equal to each other. Obviously, it is the largest in a
thin tangentially magnetized disk. If & < 1, the ellipticity, in this case, weakly
depends on the polarization of the ac field. At resonance, it differs but slightly
from the ellipticity (1.100) of free oscillations or, in our case, from

41 My

g=
H.o +41My

(9.28)

Calculating m, o at resonance with the use of (1.116), (1.92), and (1.104) and
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Positions of the magnetization vector at successive instants in the course of noncircular
precession.

substituting it, together with (9.28), into (9.26), we obtain
7rM§ B2
402 (Heo + 21 M) Hog O

This quantity is three orders of magnitude larger than (9.27) for YIG (AH =
0.5 Oe) in 3 cm wavelength range.

To increase the ellipticity of magnetization still more we can use the mag-
netocrystalline anisotropy (Chapter 2). The most advantageous is the case of
a tangentially magnetized disk of single-crystal ferrite with the easy plane of
anisotropy coinciding with the disk plane [30]. Then, 47 M in (9.28) is replaced
by 4w Mo + 2|Ha 1| where Hay = K| /My, and K is the anisotropy constant.
The value of 2|H, | is as high as ~ 30 kOe for some hexagonal ferrites, and £
becomes very close to unity even at rather high frequencies. High values of el-
lipticity and, hence, high effectiveness of frequency doubling are also achieved at
magnetodynamic resonance in comparatively large ferrite samples (Section 5.3).

The frequency doubling is a quadratic effect. Therefore, its efficiency (which
can be defined as the ratio of the output power P, at frequency 2w to the input
power Py at frequency w) increases with growing P,. The achievable values of
the efficiency are limited either by the thermal conditions in the device or by the
parametric excitation of spin waves (Chapter 10).

Rather high values of the frequency-doubling efficiency were obtained already
in early ferrite devices of this type. Melchor, Ayres, and Vartanian [274] obtained
the output pulse power as high as 8 kW at frequency 18 GHz with input power
of 32 kW; most likely, the magnetodynamic resonance was used. Later, the
efficiency of a frequency doubler with magnetodynamic resonance reached —2 dB,
the output power being 2 kW [263]. Output power of 50 W was obtained at

My2res = (9.29)
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a frequency as high as 140 GHz [28].

Let us consider now the harmonics of the transverse magnetization components.
The method of successive approximations based on solving the recurrent equations
(9.21)—(9.24) must be used in this case. Limit the treatment to an isotropic
ferromagnet and examine, to the second approximation, the magnetization in a
given internal field. We can use, then, rather simple equation (9.24). Projecting
this equation onto coordinate axes, we get forn =: 2

oM

T + 7M§2)H0 + w,-M;EZ) B —")’M!(Il)hwz

9 (2)

——Agf ~yMP Hy + wMP == yMOh... (9:30)
oMP

S WM = (Mi‘)h,, ) - Mé')hw) . (9.31)

The first-order magnetization components in the right-hand sides of these equa-
tions may be regarded as known.

The quantity M. @ in (9.31) is the longitudinal second-order magnetization
component, which was considered above. Equations (9.30) determine the trans-
verse second-order components. They arise, as one can see from (9.30), only if
the ac field, besides the transverse components (necessary for the excitation of the
first-order magnetization components Mil) and MQS')), has the longitudinal com-
ponent h.... Consider the case when this component has the same frequency w
as the transverse components, i.e., when there is one ac field making an angle
not equal to 0 or /2 with the steady field Ho. Then, the solution of (9.30) will
contain components with frequency 2w, which can be written in a complex form.
Assuming M£2; = Re[m. 42 exp(2iwt)], we find

(2w? + 4?H}) hq y & 3iwy Hohy »
2 (v*HE — W+ 2iww) (v2HZ — dw? + diww)

Mg y2 = — ’sz()hz. (932)
One can see from (9.32) that the quantities 7, 4 pass through resonance at
two values of the steady field,

w 2w
Hy = — Hp=—. (9.33)
v vy

If we dealt with nonlinear magnetic oscillations in a given external ac field with
account for the shape and the magnetocrystalline anisotropies, i.e., if we solved
equation (9.22), then instead of (9.33) we would get more general resonance
conditions

wol = w we = 2w (9.34)

where wo(Hp, Mo, N) is the frequency of linear ferromagnetic resonance in the
sample. The maximal values of m_ 7 are equal at both resonances, and in the
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case of a linearly polarized ac field (assuming, e.g., h, = 0) we get

’}’ZMohx hz
dow,

—Mys =iMzy = (9.35)

Comparing (9.35) with expression (9.27) for the second harmonic of the longitu-
dinal magnetization component in an isotropic sample with cylindrical symmetry,
we see that (if h, and h, are of the same order) the values of the second harmonics
of the longitudinal and the transverse magnetizations are approximately the same.
But it has been shown above that the values of m ; increase materially if there is
any anisotropy in the zy plane. No such great increase occurs, as it can be shown,
for the transverse second-order components, and it seems that there is no point in
using transverse components m y, in devices for frequency doubling. However,
these components have maxima at wy = 2w, e.g., for a small isotropic sphere, at
Heo = 2w/~. At such fields the spin-wave spectrum lies above the frequency w,
and the low-order processes of the spin-wave parametric excitation (Chapter 10)
are forbidden. Therefore, in frequency doublers in which the transverse second
harmonics are used, it is possible, under the condition wyp = 2w, to reach high
input powers and, hence, obtain the efficiencies of doubling comparable with the
efficiencies of the devices that use m,,. The efficiency as high as —5 dB was
obtained in one of the devices using the transverse components [279].

An interesting, though weak, nonlinear effect is observed at wy = 2w [89]: a
maximum of the power absorbed by the sample takes place in the steady field
satisfying this condition. By analogy with nonlinear optics (e.g., [55]) this effect
can be referred to as two-quantum absorption. The qualitative explanation of this
effect is obvious—some energy is needed to excite the second harmonic of the
transverse magnetization, which passes through a maximum under the condition
wo = 2w. However, such an effect is absent in the framework of the two approxi-
mations considered up to now, because the absorption at frequency w is determined
by the first-harmonic amplitudes, which, up to the second approximation, have no
maximum at w = 2wp. The third approximation is needed to find the nonlinear
contributions to these amplitudes. The ratio of the power absorbed at w = 2wy
to the power absorbed at ferromagnetic resonance (w = wp) depends, of course,
on the value of the input power P;. This ratio was equal to —60 dB for YIG at
P =15W([89].

Using the chain of equations (9.22) or (9.24), we can find each harmonic of
the transverse magnetization components. The nth harmonic will have maxima
in the steady fields determined by the conditions wp = mw (m = 1,2,3,...,n).
The intensities of the harmonics decrease with the growth of their numbers as
(h~o/Ho)™. The third harmonic was observed with the efficiency of ~24 dB at
an input power of 32 kW [363].
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9.2.2 Frequency mixing

If several ac magnetic fields with frequencies wi, ws, . . . are applied, then, along
with the above-considered nonlinear effects, the magnetization components with
combination frequencies njw) £ npwr ... (n12 .. =0,1,2,...) arise. We limit
ourselves to the case of two fields h; and h, with frequencies w; and ws.

The first-order magnetization M (1) is the solution of the linear equation (9.21)
and, hence, is the sum of transverse magnetizations Ml(l) and Mz(l) with fre-
quencies w; and w», excited by the transverse components of the fields k; and
h,, respectively. The second-order magnetization M (2 satisfies equations (9.22)
or (9.24) with n = 2, which are linear in the unknown M (@) but are nonlinear
with respect to the magnetizations M 1(12) and the fields h; 3. It is clear that M @
will contain the combination harmonics with frequencies w; + w; and |w; — wa|.
The emergence of these harmonics is the frequency mixing.

We will use, for simplicity, equation (9.22) or its projections (9.30) and (9.31).
The combination harmonics of Mz2 can be found, as well, from the condition
of M conservation. Two particular cases are to be considered: (i) both ac fields
are transverse with respect to the steady magnetization, i.e., to the z axis; (ii) one
field is transverse (hi1zo = 0) and the second is longitudinal (hy x zo = 0). If
both fields are longitudinal, M()) = 0 and, hence, M = 0.

The case when both fields are transverse was tirst studied by Pippin [315]. In
this case, it follows from (9.30) that M. ;2) = MZSZ) = 0; the value of M £2) can be
found from (9.31) or from (9.11). Assume, first. that both fields hy and b, are
circularly polarized:

hez = higcoswit + hyg coswot

hey = £ hipsinw;t £ koo sinwt (9.36)

where the signs £ before the two terms are independent and correspond to the
right-hand or left-hand rotation of the fields hy and h,. Substituting M{l) =
Re[m| ,y exp(iwt) + ma 4,y exp(iwt)] into (9.11), we find

1
M, - My = Mﬁz) =535 (|X1i|2h%0 + |X2i|2h%0)
2My

1 ! ! ”
M, (=X X5+ (£)X12 X34 ) cos (wi(F)w2) ¢
+ (X Xoe (E)X1 x5 ) sin (@1 (F)w2) t] hiokao  (937)

where x12+ = X1,2 & Xa1,2 (the upper signs correspond to the right-hand and
the lower signs, to the left-hand rotation of the polarization); the signs (+) have
the following meaning: (+) corresponds to the opposite and (—), to the identical
directions of the polarization rotation for the two fields. One can see from (9.37)
that the effects of detection are additive, and the effect of frequency doubling
does not exist, as should be expected for circular polarization of both fields. The
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alternating terms in (9.37) represent the effect of frequency mixing. The frequency
w) — wy arises when the directions of the polarization rotation of the both fields
are the same, and the frequency w) + w; arises when these directions are opposite.

An expression for the complex amplitude of the magnetization with frequency
w1 — w, follows from (9.37):

1
my. = —M—Xlixi’ihlhz- (9.38)
0

The susceptibilities x', and x4, reach high values near ferromagnetic resonance at
frequencies w; and wy, respectively. And if jw; —ws| < wy, the resonance condition
can be approximately satisfied at both frequencies simultaneously. Then, as it is

easy to make sure,

2
~ Y Mo

Mzres — w2 thhZO (9-39)

r

(for the right-hand polarization of both fields). If both fields have the same linear
polarization, the value of m, _; is eight times smaller.

Consider now the second particular case when one field is transverse, and the
other is longitudinal. Without presenting here the solution of the system (9.30)
for this case [153], we note only the following. As in the above-considered
case of frequency doubling, the magnetizations with frequencies w; F w; pass
through maxima at two values of the steady field. One of them corresponds
to the ferromagnetic resonance at the frequency w; of the transverse ac field
(Heo = wj /7 for a sphere). The second value corresponds to the resonance at the
frequency |w) — ws| or wy + wy. The complex amplitudes of the magnetization
harmonic with frequency |w; — w,| (when the resonance at w; takes place and
|wi — wy] € vHy = wp) have the form

Mo =iMy_ = ——h1hy. (9.40)

Comparing (9.40) with (9.39), we see that the effectiveness of the frequency
mixing is much higher in the case of both transverse fields when the resonance
condition is approximately satisfied for both fields.

The designs of ferrite frequency mixers for the difference frequency |w; — wy|
(e.g. [286]) are like the designs of the ferrite detectors (Figure 9.3), but a resonance
system, tuned to the frequency |w; — ws|, must be added. This system can be
realized, e.g., by putting the coil [Figure 9.3(a)] into a resonance circuit or by
matching the dimensions of the piezoelectric sample [Figure 9.3(b)]. Despite all
‘tricks’ the sensitivity of ferrite frequency mixer appears to be much lower than
the sensitivity of commonly used semiconductor devices. But the ferrite mixer, as
the above-considered ferrite detector, has an unquestionable advantage of greater
resistivity against high microwave power, radiation, etc.
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Parametric excitation of magnetic oscillations
and waves

10.1 Nonlinear coupling of magnetic modes

In Chapter 9 we studied the nonlinear phenomena that occur in ferromagnetic sam-
ples in the presence of a single, in particular, the uniform mode. However, many
different modes can exist in the sample; they were investigated in the previous
chapters in linear approximation and, hence, were independent. The nonlinearity
of the ferromagnet (and, so, of the equation of motion of magnetization) leads to
the coupling of the modes, which results in a number of new nonlinear phenom-
ena. The most interesting of them is the parametric excitation of some of these
modes under the influence of other modes when the amplitudes of the latter exceed
certain threshold values.

The nonlinear phenomena, caused—as it became clear later on—by the para-
metric excitation of spin waves, were first observed by Bloembergen, Damon, and
Wang [56, 57] in the experiments on ferromagnetic resonance in strong ac fields.
In these experiments the imaginary part of the tensor Y and the decrease of the
steady magnetization projection M, were independently measured. According
to (9.5) or (9.6), an essential decrease of both these quantities should occur at
ac field amplitude A of the order of the linear resonance-curve half-width AH /2
(Figure 9.1). Actually, a noticeable decrease of M, took place (Figure 10.1) just
at such ac field, while x” at resonance started to decrease at much smaller A value.
Besides, an additional maximum of x” arose at steady magnetic field smaller
than the resonance field (Figure 10.1). Neither of these effects can be understood
within the framework of the one-mode nonlinear theory considered in Chapter 9.
They were explained by Anderson and Suhl [19] using the idea of instability of
certain spin waves under the influence of the uniform-magnetization precession.

Equilibrium (thermal) spin waves with small amplitudes and with frequencies
distributed over broad range always exist in magnetically ordered substances
(Section 7.3). Due to the nonlinearity of the spin system they are coupled to the
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FIGURE 10.1

Ferromagnetic resonance in a sphere of single-crystal Ni ferrite in a strong ac field [57]:
(a) dependences of M, and nonlinear susceptibility xo at resonance on the ac field am-
plitude (x" is the linear susceptibility); (b) resonance curves in weak and strong ac fields.
Frequency 9 GHz, room temperature.

uniform magnetization mode excited by the external ac field. When the amplitude
of this (pumping) mode exceeds certain threshold value, the energy acquired by
spin waves from this mode compensates spin-wave losses, and the instability, i.e.,
the exponential growth of the spin-wave amplitudes, begins. The theory of such
instability was developed by Suhl [391, 392]. As the ac magnetization of the
pumping mode is perpendicular to the steady magnetization, this phenomenon
can be named spin-wave instability (or parametric excitation of spin waves) under
perpendicular or transverse pumping.

Later, Schlémann, Green, and Milano [343] discovered spin-wave instability
caused not by ac magnetization but directly by ac magnetic field parallel to the
steady field. This phenomenon was called parametric excitation of spin waves with
longitudinal (or parallel) pumping. It should be noted that the fact of nonlinear ab-
sorption of the energy of an ac magnetic field parallel to the steady magnetization,
at high amplitudes of the ac field, was predicted by Kaganov and Tsukernik [201].

We will restrict ourselves to the study of parametric excitation of spin waves in
ferromagnets. This will give an explanation of the phenomenon in ferrimagnets
(ferrites), too, because at fields and frequencies commonly used, only the lower,
‘ferromagnetic’ branches of the magnetic spectra in ferrimagnets play a role
(Section 3.3). As for antiferromagnets, the excitation of spin waves in these
substances occurs, as well, and has a number of interesting features (e.g., [265,
307)).

The theory of spin-wave parametric excitation, which we begin to study, is based
on solving the nonlinear equation of motion (2.6). We neglect the dissipation term
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in this equation; the losses will be allowed for later. The effective field is
Hys=Hy+h.+hy+ H, (10.1)

where Hj is the internal steady field, h. is the external ac field, h is the
ac effective field of dipole—dipole interaction, i.e., the ac demagnetizing field (the
steady demagnetizing field is included in Hy), and H., is the effective field of
exchange interaction.

We seek the solution of the equation of motion in the form
M = z2o0My + m. (r,t) (10.2)

and suppose that m.. < M. Let us expand the ac magnetization in the Fourier
series:

m. (r,t) = Z my (t)exp (—ikr) (10.3)
ke

where the summation is over all allowed values of the wave vector k. Note that
m.. (r,t) is a real quantity while the coefficients my (t) are complex; therefore,
my (1) = m* , (t). The term with & = 0 in (10.3) corresponds to the uniform
magnetization oscillations, and all other terms correspond to uniform plane spin
waves. These waves do not satisfy the boundary conditions at the sample surface
and, hence, are not the eigenmodes of the problem. Only if k& > ki, where kmin
is much larger than the inverse dimensions of the sample, can plane waves be
regarded approximately as eigenmodes. The main assumption of Suhl’s [392], as
well as Schldmann’s [343, 345], theory is that the expansion (10.3), nevertheless,
can be used. It should be noted that magnetostatic waves (Section 6.2) and oscil-
lations (Section 6.3) remain as yet out of consideration; the parametric excitation
of these modes will be discussed in Section 10.4.

For the uniform mode, i.e., for the term with k& = 0 in (10.3), the influence of
boundary conditions, of course, cannot be neglected. In the case of a smg_l»l ellip-

soid, it can be taken into account by the uniform demagnetizing field — N1
included in hps. For plane waves with k # 0 (really, with k£ > ky,;n) the effective
fields of the dipole—dipole interaction will have the form (7.12).

Substituting (10.1)-(10.3) into (2.6), projecting the obtained equation onto
axes z and y, and equating the same harmonics at both sides of the equations, we
get two differential equations for each k. The components my , can be excluded
from these equations using the relation (9.11). Following Suhl [392], we introduce
new variables

a = M{) (mkx +imky)
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It can be shown that in these variables

1 .
Mp, = _EMOZQ’“’“"”—’C‘ (10.5)
ki

Consider the case of an ellipsoid of revolution (spheroid) with demagnetization
factors N, and N, = Ny, = N,. Then, at k = 0, i.e., for the variable ag corre-
sponding to the uniform oscillation mode of the spheroid, we obtain a nonlinear
equation:

. da .

—1 d—to = woag — Y (h~x + l]).Ny) + Qo (10.6)
where wg = wy + YN My is the eigenfrequency of the uniform mode, h. is
the external ac field, and §2,,¢ is a sum of many nonlinear terms containing the
variables ay, ax, and a* . For each k # 0 (or, to be more exact, for k > Kmin), @
pair of equations is obtained:

.day

—igs = (Ar + vh)ax + Bra® , + Qi (10.7)

and the adjoint equation obtained from (10.7) by complex conjugation and re-
placement k — —k. Here, Ay and By are determined by (7.11) and (7.114) and
Q, is a sum of nonlinear terms containing ag, ax. and a* ;. The nonlinear terms
in (10.6) and (10.7) depend on My, N,, N, , the components of k, and—some
terms in (10.7)—on the exchange constant 1 (Section 7.1).

The solution of linearized equation (10.6) (without §2,0) corresponds to the
forced uniform magnetization oscillations in a spheroid, studied in detail in Sec-
tion 1.5. Equation (10.7) and the adjoint equation describe, in a linear approxi-
mation, the coupled oscillations of two harmonic ‘oscillators’ ax and a* ; corre-
sponding to spin waves with wave vectors k and —k. To find the equations for the
normal modes a classical analog of the third Holstein—Primakoff transformation
(Section 7.4) should be used. This means that we have to pass from a; and a*
to new variables ¢ and ¢* ;, in which the linear parts of equation (10.7) and the
adjoint equation—neglecting as yet the term yh.. .ax—will have the form

dcg dC:k

E = iwkCk dt = —iwkcik. (10.8)
The new variables are related to the old ones by the expressions (e.g., [14])
ar = UpCk + VkC 4, a*, = vgcr + urcl (10.9)
1[4 1[4 . k
=—4/—+1 =——=4/— —1lexp2 = arctan -~
Uk 72V o + Vg \/5 o exp (2ipr) i = arctan %
(10.10)

where wy is the spin-wave frequency (7.9).
The solutions of linear equations (10.8) can be presented in the form

cx = 2 exp (iwxt) ¢ty = 7% exp(—iwkt) (10.11)
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and correspond to spin waves with wave vectors k and —k. Thus, to a linear
approximation, the uniform precession excited by an external ac field and the spin
waves (with small, equilibrium amplitudes) are independent modes. Nonlinear
terms in (10.6) and (10.7) result in the coupling of spin waves with each other,
with the uniform mode, and [the term yh. ,ax in (10.7)] with the longitudinal
external ac magnetic field.

It should be noted that different terms in the classical equation (10.7) are
analogous to the corresponding terms in the quantum-mechanical equation of
motion for the magnon creation and annihilation operators, which can be obtained
from the Hamiltonian expressed in these operators. We will not discuss here this
analogy because the parametric excitation of spin waves can be fully described,
as Suhl [392] and Schlomann er al. [343, 345] have shown, in terms of classical
theory.

10.2 Thresholds of parametric excitation under transverse pumping

Consider the case when h.., = 0, i.e., the ac magnetic field is perpendicular to
the steady magnetization. This field (we suppose it to be uniform) excites, to a
linear approximation, only the uniform ac magnetization, which plays the role of

pumping.

10.2.1 First-order and second-order instabilities

As we are interested, at present, only in the threshold values of the pumping
amplitudes, we regard all spin-wave amplitudes in (10.6) and (10.7) as small in
relation to ag. Then, supposing the field k.. (with frequency w,) to be right-hand
circularly polarized, we find from the linearized equation (10.6), after replacement
wo — wo + iwro,

_ Yhy
ao

= oo T Ty P (iwpt) = doexp (iwyt) (10.12)

where by = by +iha .

In equation (10.7) and the adjoint equation, we retain only the terms of the
first and second order in ag and, turning to the variables ci and c* , we get the
equation

dC;c
dt
and the adjoint equation where

=i (wk + Tklao|?) ck + 1 (prao + &ad) ¢ (10.13)

Pk = p_j = —ZTM (wk + wr + nk?) sin 26, exp (ipk) (10.14)
k
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A N
=6k = w W 00520k - wu—l +’I7k‘2 (10.15)
4(.¢J]c 4r
1 N, -V .
T, = :)—(3/:— [2Ak (0052 0 — Esinz O + —47‘_—-1_) + %IKSID“ Hk] . (10.16)

Note that spin-wave losses are not yet taken into account. Comparing (10.13)-
(10.16) with (10.8), we see that the coupling of spin waves with the uniform
mode results, first, in the nonlinear shift of the eigenfrequency of spin waves:
Wi — @k = wx + T|ao|?®. Second, the coupling between spin waves with wave
vectors k and —k arises, and the coupling coefficients contain time-dependent
factors ag and a3.

It is known [256] that the time-dependent coupling between two oscillators can
lead to the energy transfer from the source that modulates the coupling to the
oscillators. This process is most effective if the following condition holds:

nwp = wp + wz (10.17)

wheren = 1, 2, 3.. ., w; and w, are the eigenfrequencies of the oscillators, and wp
is the coupling-modulation (pumping) frequency. In the corpuscular ‘language’,
relation (10.17) is the condition of energy conservation in the elementary process
of annihilation of n particles with energy fiwp and creation of a pair of particles
with energies fiw; and fuv,.

At a certain threshold value of the pumping amplitude, the energy transferred
to the oscillators exceeds their losses, and their amplitudes begin to increase
exponentially, i.e., the instability arises. The value of n in (10.17) is the order of
instability. In our case, spin waves with wave vectors k and —k are the coupled
‘oscillators’, and the degeneracy takes place (w; = wy).

One can see from (10.13) and the adjoint equation that the increase of ¢, and
c* ;. 1.e., the instability, can be caused only by the terms that change with frequency
wi; other terms may be neglected while examining the threshold of instability. It
can be shown that, at amplitudes ag up to threshold. the difference between &, and
wy 1s small, and we will neglect it. Then, as it follows from (10.11) and (10.12),
the term ipragc® ;, in (10.13) must be taken into account, and the term i{ka(z,c*_ X
can be neglected if wy ~ 2wy, [ie,n =1in (10.17)]. fw, >~ wy, ie,n = 2, the
latter term is to be taken into account and the former can be neglected.

Thus, for spin waves with wy =~ wp/2, i.e., for the first order spin-wave insta-
bility, equation (10.13) and the adjoint equation become

dc*
de

Solution of these equations can be sought in the form

dex
dt

= iwgck + ipgaoct = —jwrcr — ipragcr. (10.18)

cx = cdexp (i%t) ¢t =% exp (—i—‘;—pt) (10.19)
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where 02 and c(l’;C are slowly varying functions of time:

A =) exp(At) % =% oexp(At). (10.20)
Here, ¢, and c°% , are constants, and A is a real quantity. The condition for
instability is A > 0.

At this point we allow for spin-wave losses replacing wy, by wy, +iw; & in (10.18).
Inserting (10.19) into (10.18), we obtain a system of two homogeneous linear
algebraic equations in Cgo and co_*ko. Setting the determinant of this system to
zero, we get

Wh \ 2
A+ we) + (Wk - 7") = ad?|px)?. (10.21)

The threshold amplitude of the uniform mode a ;. , is determined by the condition
A=0:

1 w, 2
a1 = m\/wfk + (7" —wk) . (10.22)

To find the actual value of the threshold we must minimize expression (10.22).
We see, first of all, that the threshold, as it was supposed, is the lowest for spin
waves with wy = wp/2. Then, taking into account (10.14), we get

gy = min ﬂ} = min Drkp - . (10.23)
|| wM (wk +wyg + nkZ) sin 26,

Minimization should be performed here with respect to k or 6, subject to the
condition wy. (k,8x) = wp/2. It follows from (10.23) that, if the dependence of
wrk on k and 6 can be neglected, the threshold pumping amplitude a ., is the
smallest for spin waves with 6 somewhat smaller (due to the term 7k?) than 45°
(provided such spin waves do exist at given wp and wyy).

For the second-order instability (wy >~ wp), equation (10.13) and the adjoint
equation reduce to

dee dc*

— = lwiCk + igkagc*_,c — = —lwgc* — i.f,‘c‘a(’fck (10.24)
dt dit
and the solution must be sought in the form
¢k = ¢y exp (iwpt) ¢ =% exp (—iwpt) . (10.25)

By a method similar to the one used above, we get at w;, = Wp

0 . Wr k
= 10.26
A2 = MIN { 2%, } (10.26)
where ¢ is determined by (10.15). Without taking into account the dependence
of wrx on k and 6y, we see that al,, , is the lowest for spin waves with 8 = 0.
The coupling parameters py and &, are both of the order of wy,, as it follows
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from (10.14) and (10.15); for ‘good’ single-crystal ferrites, applied usually in
experiments on parametric excitation of spin waves, w;x < wps. Therefore, the
threshold amplitudes a ;. , are much larger than the amplitudes a .

For the first-order instability to occur, the frequency wp/2 must lie above the
lower boundary wy of the spin-wave spectrum (7.9). In the case of an ellipsoid,
this leads to the condition

Heo < ‘;—" + N, M. (10.27)
Y

For the second-order instability, wp/2 in (10.27) 1s replaced by wp.

10.2.2 Threshold fields

Consider now the threshold values of the external ac magnetic fields, assuming
them to be right-hand circularly polarized. For the first-order process, we find
from (10.12) and (10.23)

2
2w,kwp\/ w?y + (wp — wo)
Ywp sin 28 (wp/2 + wi + 1k?)

hir1 = min (10.28)

This field is the lowest when the pumping frequency wy, is equal to eigenfrequency
wp of the uniform mode. However, this can take place, as it is easy to make sure,
only if

wp < wM% = Wers (10.29)
For a sphere, w.; = 2w /3 coincides with the frequency at which wy passes the
upper boundary of the nonexchange spin-wave spectrum (Section 6.1). For a YIG
sphere at room temperature, fo; = 3.27 GHz.

If the condition (10.29) is only just satisfied [Figure 10.2(b)], the angle 6y is
very small, and, as it is seen from (10.28), the threshold field (as well as the
threshold amplitude ag 1) is very large. With lowering frequency 6y increases,
the threshold field decreases, and at 8, ~ 45° it becomes of the order of!

AHo AHy

10.3
Mo (10.30)

hune1res =
Spin waves with small %, i.e., in the framework of Suhl’s theory, with k = 0, now
become unstable. In YIG single crystals (AHy ~ 0.3 Oe, AHy ~ 0.15 Oe) the
e 1 res Value is as small as 10~% Oe. Further lowering of the frequency wy (still
equal to wp) results in excitation of spin waves with increasing k, 65 remaining
close to 45°.

In this expression and throughout this book, AHy = 2wro/y and AH = 2w, /7 are, as
distinct from [392], the full widths of resonance curves.



10.2 Thresholds of parametric excitation under transverse pumping 253

Oy | (a) O | (b) el (c)
(l)p = (1)0‘
(l)p = 0)0‘
W, = 0
N /2
o, n ] mp/2 P
k k k
FIGURE 10.2

Relative positions of the spin-wave spectrum and the frequency of transverse pumping
(equal to the eigenfrequency of uniform oscillations in a sphere) when condition (10.29)
(a) is well satisfied, (b) is just satisfied, and (c) is not satisfied.

0 0.2 0.4 0.6 0.8 1.0
'YHeO/ wp

FIGURE 10.3
Threshold field for off-resonance first-order spin-wave instability (subsidiary absorption)
in a sphere vs external steady field [392]. © 1957 Elsevier Science Ltd.

At high frequencies (w > w,), when the condition wy = Wp /2 cannot be satis-
fied at resonance, the minimization of (10.28) [392] shows that the lowest threshold
field takes place in the external steady field H o min less than the resonance field.
Spin waves with £k = 0 and 6, = 45° then become unstable. The values of
Heomin, as well as the values of iy, 1, depend on the sample shape and on the
ratio wp /wys. For spheres, the values of Heomis lie in the range of (0.5-0.9) wp/v
(Figure 10.3). To estimate the value of hy, | assume, e.g., that wp ~ wpy =~ LSwy
and wp — wp = 0.25wp, which corresponds approximately to a YIG sphere at
room temperature and frequency of 5 GHz. Then, from (10.28) or Figure 10.3, we
obtain hg, 1 = 0.2AHy, or, assuming AH = 0.15 Oe, we get hgye = 0.03 Oe.
Thus, the values of threshold field (but not of threshold magnetization) are much
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larger in this, off-resonance, case than at resonance (wp, = wp). However, these
values are also easily attainable in experiment, even for polycrystalline ferrites
with AH ~ 10 Oe.

To the left of the minima in Figure 10.3, spin waves with ;. still close to 45°
but with large k values become unstable. To the right of the minima the unstable
spin waves have &k ~ 0 and 6, < 45°. It should be emphasized that all these
conclusions were drawn by means of minimizing (10.28) at constant AH}; the
AHj dependence on k and 6, can considerably affect them.

The first-order spin-wave instability at wp # wo was named by Suhl [392] the
subsidiary absorption, and the first order instability at wp, = wo was named the
coincidence of subsidiary absorption with main resonance.

If condition (10.29) is not satisfied, the second-order process comes into action
atwp =~ wg. The threshold magnetization for this process is determined by (10.26),
and the threshold field, with allowance for (10.12}, is

rt [l + (s — wn)']
V26

A2 = min (10.31)

This field is the lowest at resonance (wp = wp), and, as it follows from (10.15),
a pair of spin waves with 8y = 0 and 6, = 7 becomes unstable. For a sphere at

resonance,
AHy [AH,
==y 10.32
Pz = =37 2ty (1032)

For YIG at room temperature and a wavelength of 3 cm, an estimate gives
haea ~ 2x1073 Oe, which is an order of magnitude higher than the thresh-
old field for the first-order process at resonance, and an order of magnitude lower
than the threshold field for the off-resonance first-order process. The consid-
ered second-order process (the saturation of main resonance, according to Suhl)
caused the decrease and broadening of the resonance peak in the Bloembergen
and Wang experiment (Figure 10.1). The wide maximum at lower steady field in
this experiment is a result of the first-order off-resonance process.

10.2.3 Effect of pumping-field polarization

All the above-cited expressions for threshold fields relate to the case when the
pumping field has the right-hand circular polarization and the sample is an el-
lipsoid of revolution, so that the magnetization is also circularly polarized with
right-hand rotation. This is not the case when the field is not circularly (in partic-
ular, linearly) polarized, or the sample is an arbitrary ellipsoid. However, if the
frequency of the pumping field is equal or very near to resonance frequency, the
magnetization component with right-hand circular polarization dominates (Sec-
tion 1.5). Then, the expressions for threshold fields with linear polarization will
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differ only by a factor of two from the above-cited expressions for both first-order
and second-order processes at resonance.

For the off-resonance first-order process (the subsidiary absorption), the left-
hand circular magnetization component cannot be neglected a priori. Consider,
e.g., the case when a linearly polarized pumping field 2 makes an angle ¢} with
the x-axis. Then, the solution of (10.10) is

: — . 1 vhexp(i
ao = ag exp (iwpt) + ag exp (—iwpt) ag = ELJ(;%%’;}J’
P

(10.33)
Here, aif exp (iwpt) = m* /Mo, where m* and m™ are the amplitudes of magne-
tization circular components with right-hand and left-hand rotation, respectively.
Substituting (10.33) into (10.6) and (10.7), we get, in the same way as in the case
of circularly polarized field, the following equation:

d . . * - X : *
% = iwkek + i (prag +riag ) exp (iwpt) ¢y (10.34)
and the adjoint equation where
1
Ty = _YM (wH + nk? — ﬂ) sin 26, exp (—3ipyg) . (10.35)
2 wp 2

The threshold field is now the lowest for spin waves with ¢, = @5 and, of course,
with wi = wp/2. In this case

2wy gy (wg — w?,)

. 10.36
Yw s sin 26y, [w§/2+w0 (wi +1k?)] } ( )

Penr 11in = min {

Comparing (10.36) with (10.28), we see that the ratio Ay iiin/hue1 differs
slightly from 2, i.e., the left-hand circular component of magnetization has small
impact on the parametric excitation even in the off-resonance process. However,
the case of the pumping-field linear polarization is of interest in that spin waves
with distinct values of the azimuthal angle ¢, are excited.

10.3 Longitudinal and oblique pumping

We proceed to the study of parametric excitation of spin waves by an ac magnetic
field with a longitudinal (parallel to My) component. The term yh.. ;ax in (10.7)
should now be taken into account.

10.3.1 Longitudinal pumping

Suppose, first, that the ac magnetic field has only a component h.. .. Then, the
ac magnetization is absent in linear approximation, i.e., ag = 0. Neglecting,
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in (10.7) and in the adjoint equation, the terms that cannot lead to instability and
passing, according to (10.9), to the variables ¢, and ¢* ,, we obtain

dex dety _ . . B
— = —1lwiC - ~
at at kCole = VB~

It is evident that h.. , directly results in the coupling between the ‘oscillators’ cx
and c*  if By # 0. The quantity Bj caused by the dipole—dipole interaction
is proportional to wyy sin @ [formula (7.11)] and, in accordance with (7.23)
and (1.106), is related to the ellipticity of spin waves

€= 2|Bk|
A + IBkI ’

The need of ellipticity for parametric excitation of spin waves under longitudinal
pumping is easily realized: if £ # 0, the longitudinal component of the spin-
wave magnetization with frequency 2wy, arises (Section 9.1) and interacts with the
longitudinal pumping field, which has the same frequency.

Present the longitudinal ac field in the form

*

. . By
= jwgek + ivha . —c*
Wi

k. (10.37)

(10.38)

By = %hz [exp (iwpt) + exp (—iwpt)] (10.39)

and substitute it, as well as expressions (10.11) for ¢, and c*,, into equa-
tions (10.37). Assume the frequency w, to be near 2wy and retain in (10.37)
only the terms which vary with frequency close to wy, and, so, can lead to insta-
bility. Then, the first equation (10.37) takes the form

dck
dt
where the coupling parameter

= iwkck + 1Vih, exp (wpt) c* (10.40)

B
Vi = 228 = T9M 1026, exp (2igr) .- (10.41)
2wk 4wk
Comparing (10.40) with the first equation (10. [8), we see that they differ only
by the replacement of py, ag by Vi h.. Thus, we may make this replacement directly
in the threshold formula (10.22) or (10.23). For spin waves with wy = w,/2, when

the threshold is the lowest, we get

hztm=min{w"°} =min{~ﬂ}. (10.42)

|V)c wp sin2 0k

If AHj can be regarded as independent of &k and 6y, then h,y, is lower the
closer 8y is to /2. In small steady magnetic fields, when w,/2 lies above the
upper boundary of the nonexchange spin-wave spectrum [Figure 10.4(a)], spin
waves with 6, = 7/2 become unstable. Their wave numbers, as it follows, e.g.,
from (7.17), are determined by the expression

Dk* = H, - H, (10.43)
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FIGURE 104
Relative positions of spin-wave spectra and the frequency of longitudinal pumping. Dots
indicate spin waves that become unstable.

where, according to (7.18),

“p

2
H, = Hy.(n/2) = \/<2_’Y> + (27I'M0)2 — 27 My. (10.44)

The critical field H. is the internal steady magnetic field at which spin waves with
wr = wp/2 and O, = w/2 have k = 0.

With the decrease of Hy, the k value of parametrically excited spin waves?
increases and at Hy = 0 reaches the highest value km., = v/ H./D possible for
given wp. For YIG at room temperature, kmax =~ 5 x 10° at fp = 9 GHz, and
kmax =~ 10% at f; = 36 GHz. The azimuthal angle of parametric spin waves is
indeterminable in the case of an isotropic ferromagnet, so that the whole ‘fan’ of
spin waves with wave vectors k and —k lying in 8, = 7 /2 plane is excited.

In fields Hy higher than H, [Figure 10.4(c)], the threshold field is the lowest
for spin waves with k = 0 and 6 ; determined by the expression

(%/2)2 - Wi

WMWH

sin? O = (10.45)
which follows from (10.42) and the conditionwy = w,/2. Withincreasing Ho, the
angle 0y decreases and the threshold field grows; at Hy = wp/(2y) it approaches
infinity.

The measurement of spin-wave parametric excitation thresholds under longi-
tudinal pumping is widely used for determining the spin-wave dissipation pa-
rameter AH. Samples—usually ferrite spheres or metal films—are placed into
resonators. In centimeter or millimeter wavelength ranges, reflection hollow res-
onators, rectangular or cylindrical, are conventionally used. The threshold values
of the incident power P; are measured with changing steady field at constant

2In what follows, we will for brevity use the term ‘parametric spin waves’.
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FIGURE 10.5
Envelopes of pulses reflected from a resonator with ferrite sphere: (a) in a weak ac field,
(b) just above threshold, and (c) far above threshold.

frequency wy. The threshold ac field is found using the formula

B2 — 8ra

Qo—— b (10.46)

pro 1+q

which can be easily derived with the aid of equivalent schemes. In (10.46), V} is
the resonator volume, ¢ = Q./Qo (Qo and Q. are the internal and the external
quality factors of the resonator, respectively), and « is determined by (5.47).

Up to threshold, the sample (in a longitudinal ac field) does not absorb electro-
magnetic energy. Above threshold, the absorption arises, Qo decreases, and the
reflection coefficient from the resonator changes (decreases or increases, depend-
ing on initial value of g). Measurements are usually carried out in pulse regime,
and the threshold is indicated by the change of the reflected-pulse envelope (Fig-
ure 10.5). The measured value of P, 4, is smaller the greater the pulse duration 7;
the actual value of the threshold can be obtained by extrapolating the dependence
P ,_h,(T) to 7 — oo [343].

The h, wme values obtained in the described way are plotted vs H, o in Figure 10.6;
the calculated values of k and ;. of parametric spin values are also shown. The
curves h,m(Hp) are called the ‘butterfly curves’. Their minima (‘bills’) are
usually located at Hy = H., where spin waves with k = 0 are excited. At left
‘wing’ the excited spin waves have 8, = 7/2 and k > 0. The increase in h, g,
with decreasing Hj at this wing is due to the dependence of AH}. on k. At right
wing the excitation of spin waves with small k& (with k& = 0 in the framework of
the theory considered up to now) and ;. decreasing with the growth of H takes
place. The steep increase of &y, at this wing is due to the factor sin? 8, in the
denominator of (10.42).

Having measured b, g, we then find A Hy. from (10.42). The corresponding k
values are found from (10.43). The dependences A H (k) obtained in such way
will be discussed in Section 11.2.

Letus briefly consider now, using longitudinal pumping as an example, the effect
of magnetocrystalline anisotropy on the parametric excitation of spin waves. In
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FIGURE 10.6

Experimental values of threshold field [343] and calculated k and 0 values of spin waves,
parametrically excited under longitudinal pumping, vs external steady field. YIG sphere at
frequency 9.4 GHz and room temperature.

the case of longitudinal pumping, the dominating factor is the ellipticity of spin
waves, which is significantly influenced by the anisotropy.

To allow for the magnetocrystalline anisotropy we have to insert its effective
field in the equation of motion and then, using the same method as above, to obtain
the equations for ¢, and ¢* x- In the particular case of a cubic crystal with M,
lying in the {110} plane, this will result in the replacement of V; in (10.40) by

Vie + ywa /(4w ) where
o = My (VY ~ N3y). (10.47)

Here, N}, and N}, are the effective demagnetization factors determined by (2.47)
with g = 45°. The threshold field in this case is

prHk
lwar sin? 6 exp 2ipy) + wa| |

h. e = min { (10.48)
It is minimal for M directed along the (110) axis if the contribution of anisotropy
to the spin-wave ellipticity is the greatest.

The threshold field depends now on both angles of vector k. Its minimal value
takes place at §;, = 7/2 and ¢ = 7/2,37/2 for K; < 0, and at §; = /2 and
pr =0, m, for Ky > 0. In both cases [313]

prHk

e 10.49
WM +3"/IHA|| ( )

hzlhr =

10.3.2 Effect of nonuniformities

Nonuniformities (defects), as impurities, pores, surface roughness, and grain
boundaries in polycrystals, lead to the so-called two-magnon processes, i.e., to the
scattering of magnetic oscillations and waves by defects. The contribution of these
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processes to the relaxation of linear magnetic modes will be studied in detail in
Section 11.3. Here we will consider the influence of such processes on parametric
excitation of spin waves under longitudinal pumping, studied theoretically by
Zakharov and L’vov [458].
We have to add the terms describing two-rnagnon processes into equa-
tions (10.37). Then, the first of these equations becomes
d .

C . *
d—tk = lwgCk + Z Uk k,Cky + 21l ;Viee™ (10.50)
k,

where the summation is over all degenerate spin waves (with k; = k) and the
coefficients vy x, depend on vectors k and ky, as well as on the nature of nonuni-
formities. Similar equations can be written for all amplitudes cx, -

Two approaches can be applied to this problem (and to many others that will
be examined below): an approach of coupled modes and an approach of normal
modes. In using the former, we assume that some external forces excite a certain
mode, e.g., spin waves with wave vector k; the coupling between this mode and
other modes (spin waves with vectors k1) leads to the excitation of these modes.
This results in the increase of the dissipation parameter of the primary mode:

wek = W + Wik (10.51)

where w?, corresponds to additional dissipation caused by the coupling, in our
case, by the two-magnon processes.

In using the second approach, of normal modes. we have to pass, e.g., in equa-
tions (10.50) and analogous equations for c,, to new variables in which these
equations in linear approximation (i.e., without the terms 2ih.. ,Vic* ;) are un-
coupled. These new variables correspond to the normal modes. Their dissipation
parameters are not equal to w?, +w?, butare close to w?,. However, the eigenfre-
quencies of the new modes lie in certain bands located near the eigenfrequencies
of the ‘old’ modes (corresponding to the variables cx and c* ), which leads to the
broadening of resonance curves.

Without considering any calculations, using either the first or the second ap-
proach, we cite some results obtained in [458]. We point out, first of all, that the
threshold fields, in the presence of uniformities, are not determined by the same
expressions as in the absence of them, with the replacement of w?k by w?k + Wy
The reason for this is that the pumping leads to the coupling of a certain pair of
normal modes, the dissipation parameters of which are not equal to w?, + w}, .
It might appear (we have met with such a statement in some early works) that
nonuniformities have no influence at all on the threshold of spin-wave paramet-
ric excitation. This is not true: the nonuniformities lead to chaotization of the
phases of excited spin waves, they cease to satisfy the optimal phase relations
(Section 10.5), the coupling of spin waves with the pumping field decreases, and
the threshold-field value increases.

If the nonuniformities are randomly distributed over the sample and their di-
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mensions are small as compared with k~! of the parametric spin waves, then, in
the case of wf, < w?,,

2w, 1 ! w9
haote = —2 [wo + ——w', In (0.42 fk)J 10.52
T qou [R T 9 aE o, (1052)

and in the case of ¥, > w?,,

2w
Bzt = w; AT (10.53)

If the scattering of spin waves occurs at the sample surface and the sample
dimension d > k!, then

2w, 2 C 2
home =~ BV (k)" + (@) (10.54)

In this case, taking (6.7) into account, we have

Wiy = {%w?k = -12’% (10.55)
where [ is the spin-wave mean free path (7.27) and £ is a factor of the order of
unity (€ = 7 forlx/d < 1 and £ = 7/2 for I, /d > 1). One can see from (10.54)
and (10.55) that the increase of threshold, due to the scattering of parametric spin
waves by the sample surface, is larger the larger the group velocity of spin waves.
This can be explained by the removal of spin waves from the region of interaction:
spin waves scatter at the sample boundary before they build up to a sufficient level
under the action of pumping. A similar effect takes place for transverse pumping,
too.

In polycrystals, the dimension d is the grain size; threshold fields grow with
its reduction. This is widely used to increase the threshold fields and, hence, to
raise the maximal operating power of microwave ferrite devices (e.g., [51]). For
high-quality ferrite single crystals, the considered effect manifests itself only at
low temperatures in very small samples [277].

10.3.3 Oblique pumping

I the ac field has both transverse and longitudinal components, then its threshold
value is determined by simultaneous action of the transverse pumping by the
ac magnetization, and of the longitudinal pumping by the z component of the
ac field. Consider the case of an arbitrary oriented linearly polarized ac field:

h~ s = hsinéy cos py, cos wpt h~ y = hsin@y, sin ), cos wpt

h~ : = hcosf coswpt (10.56)

and restrict our treatment to the first-order process in a sample without nonunifor-
mities. The equations for c; and ¢* « Will now contain nonlinear terms that are
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present both in (10.18) and in (10.37):

dc . ) o .
d_tk = jwkck +1 (VihcosOn + prag +1ray ™) exp (iwpt) ¢* (10.57)

where

ot = l'yh sin 8, exp (ipp)
072 wo F wp
and 7 is determined by (10.35). The threshold field can be obtained from

equation (10.57) and the adjoint equation in the same way as for pure transverse
or pure longitudinal pumping. According to Jakovlev [451],

(10.58)

hie1 = min{ EE-AH;C [sin2 61 cos by,
WM

wo (wy + nk?) + w2/2 -1
peo(wn 7 )2 o/ sin28ksin20h] } (10.59)
wp—wo

It is assumed here that ¢ = p; in this case the threshold is the lowest, as for
transverse pumping by a linearly polarized field (Section 10.2).

Minimization of (10.59) with respect to k or 6, subject to wi = wp/2, yields
the actual value of hyy; and the values of k and 6, of parametric spin waves. At
Hy < H,, spin waves with large k are excited and their polar angles 6 1 depend on
65, and lie between 7 /2 (for 85, = 0, i.e., for longitudinal pumping) and /4 (for
6, = 7/2). At Hy > Hoc(6k 1), unstable spin waves have k = 0 and polar angles
determined, as in the case of longitudinal pumping, by formula (10.45) [the field
Ho (6% 1) is given by (7.18)]. In the intermediate region He < Hp < Hy (6r1),
the values of k, 85 1, and iy, 1 can be found only with allowance for the dependence
of AH on k and 6y.

The oblique pumping is essential for the understanding of spin-wave parametric
excitation in the presence of domains. Let us briefly discuss this problem. The
spectrum of magnetic oscillations in samples with domain structures can be found
only for simple, regular structures (Section 8.2) But even for such structures,
additional assumptions must be made to analyze the parametric excitation of spin
waves. The main assumption is the neglect of interaction between spin waves in
different domains. The processes in domain walls are also to be neglected, and the
excited modes, as in all above-considered problerns, must be regarded as uniform
plane waves.

With all the mentioned assumptions, the method similar to that used many
times in this chapter can be applied. It is necessary, however, to allow, first, for
the demagnetizing fields in the domains (Section 8.2). Second, we have to take
into account that the pumping is oblique, and the angles 6 and ¢}, of the ac field
with respect to the steady magnetization are different in different domains. With
growing ac field, the instability arises first in such domains in which these angles
provide the lowest threshold. For the off-resonance first-order process, i.e., when
wy is equal neither to w | nor to wy; (Section 8.2), threshold is the lowest in domains
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in which 8, is equal to or near zero, so that the pumping is nearly longitudinal. On
the contrary, if wy is equal to or near w, or wy, instability occurs first in domains
for which the pumping is transverse.

A complete theoretical and experimental investigation of spin-wave parametric
excitation in unsaturated samples was carried out by Pil’shchikov et al. [314,
248]. The case of a sphere of cubic crystal magnetized along the (110) axis was
considered, for which the linear ferromagnetic resonance was studied in detail
(Section 8.2). The obtained data confirmed the qualitative statements cited above.

10.4 Instability of nonuniform modes and nonuniform pumping

It has been assumed so far in this chapter that the parametrically excited modes
are uniform plane waves and that the pumping field is uniform. In the present
section these assumptions will be discarded.

10.4.1 Parametric excitation of magnetostatic oscillations and waves

As already mentioned, the assumption that the parametrically excited modes are
uniform plane spin waves ceases to be valid when the minimization of threshold
field results in k values smaller than, or of the order of, the inverse dimensions
of the sample. The modes really excited in this case must satisfy the boundary
conditions at the sample surface. If the sample is an ellipsoid of revolution, these
modes are Walker’s modes (Section 6.3). Expansion (10.3) must be replaced,
then, by the expansion

m.(r,t) = % Z [avm, (r) + aim] (7)) (10.60)

14

where m,(r) are the normalized magnetizations of the Walker’s modes and a,
are time-dependent complex quantities.

Let us consider the case of longitudinal pumping. Then, substituting (10.60)
and the appropriate effective fields into the equation of motion, taking into account
the orthogonality relations (6.108), and neglecting the terms nonlinear in a,, we
get equations [345]

da,
dt

= iw,a, +ivh; coswpt Z Av @ (10.61)

v

Here, h, is the complex amplitude of the pumping field h. ., and ), ,+ is the
overlapping integral

Avy = ~—1—/m,’j (rym;, (r)dV (10.62)
D Jy
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where integration is carried out over the volume of the sample and D is the
normalization constant in (6.108).

As in Sections 10.2 and 10.3, we leave in equations (10.61) only the terms that
vary with frequency wp and, hence, can lead to instability, i.e., the terms for which
wy = wp—w,. Toallow for losses wereplace w, by w, +iwr, = w, +iAH, [(27).
The instability will first occur for the pair of modes vy and v, for which the
threshold field is the lowest. In the same way as in Section 10.3, we obtain for
this pair

(10.63)

, { AH,, AH_,,Z}
h e = min .

R

It turns out that, for a sphere, \,, ,, # 0 if mode indices n and m (Section 6.3)
satisfy the following selection rules [289]:

n =Ny m; = —imay. (10.64)

The degenerate instability (w,, = w,,) is possible for modes with m = 0, e.g.,
for the mode (2,0,1). For this mode, the magnetization is elliptically polarized
(Section 6.3), which is the necessary condition for longitudinal pumping. Us-
ing (6.106) to calculate A3 0 1) (2,0,1), We obtain

hate = 1252 AH: 0,1). (10.65)
WM

The nondegenerate instability is possible, e.g., for the pair (3,1,0) and (3, —1,0);
in this case [88]

W
B e = 1.14ﬁ\/AH(s,l,o)AH@,_l,o). (10.66)

Expressions (10.65) and (10.66) represent the lowest thresholds for longitudinal
pumping of Walker’s modes. Comparing them with (10.47), we see that (provided
the dissipation parameters are the same) the threshold fields for magnetostatic
modes are slightly higher than for plane spin waves.

Selection rules for transverse pumping of the Walker modes in a sphere, in the
case of the first-order process, are [394]

ny =Ny m;=1-mj. (10.67)

The second of these conditions means that the sum of azimuthal indices of the
excited modes is equal to the azimuthal index of the pumping mode (1,1,0). The
degenerate instability cannot take place under transverse pumping. The threshold,
in this case, is the lowest for the pair (2,0,1) and (2,1,0). It is much higher than
the threshold for plane spin waves.

The parametric excitation of nonexchange magnetostatic waves was first inves-
tigated theoretically by Schlémann and Joseph [345] in the case of longitudinal
pumping of waves in a circular ferrite rod magnetized along its axis. We will cite
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some results of this theory. The selection rules are, in this case,
k.1 =—k.» m; = —my (10.68)

where k. | 2 are the wave numbers of waves propagating in opposite directions
and m, are the azimuthal indices of these waves with opposite directions of
polarization rotation. The degenerate instability is possible for waves with m = 0,
which have the same frequencies for different propagation directions (Section 6.2).
The threshold field is minimal in this case, and the expression for it is

WpWH
(wp/ 2)2 ~ wi
Note that (10.69) coincides with expression (10.42) for the threshold field of the
plane-spin-wave instability at Hy > H.. (To make sure of this, formula (10.45)
must be taken into account.)

Consider now the longitudinal pumping of nonexchange magnetostatic waves
in films. As in the case of a rod, instability occurs for a pair of waves propagating
in a film in opposite directions with the same k. For volume waves, the degenerate
instability may take place, and then formula (10.69) holds. For surface waves in
a tangentially magnetized film, the threshold field has approximately the form

hzme = Hpp. (10.69)

By “p AHj. (10.70)

2\/(wH +wn/2) = (wp/2)’

At wp/2 = wy, ie., for waves with k& — 0, the threshold field is equal to
(wp/war)AHy, which is the same as follows, in this case, from (10.69). At
wp/2 = wy +wnp /2,ie., for k — oo, the threshold field approaches infinity. For
all intermediate k values the threshold of surface-wave instability is higher than
for volume waves. The reason for this, as well as for the fact that h, y,, — 00 at
k — o0, is that the magnetization for surface waves is nonreciprocal (Section 6.2),
which leads to the decrease of the overlapping integral with growing &.

Without considering in detail the parametric excitation of magnetostatic waves
under transverse pumping [259], we note only that thresholds, in this case, are
usually higher than under longitudinal pumping and increase infinitely at k — 0
and at k — oo.

We are now able to discuss the question of what is actually excited when, from
the theories that deal with uniform plane spin waves, there follows the excitation of
such waves with k£ = 0. In the case of transverse pumping, magnetostatic modes
have higher thresholds than plane spin waves with such k values that Suhl’s theory
is already valid, whereas the increase of AH) due to the growth of k is still
negligible. Such spin waves with k ~ 10* are excited when Suhl’s theory gives
k=0.

As for longitudinal pumping, it has been pointed out above that threshold fields
for magnetostatic modes are approximately the same as for plane spin waves. But,
actually, the thresholds for magnetostatic modes turn out to be higher due to the
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influence of surface inhomogeneities, radiation damping, etc. Thus, spin waves
with k ~ 10* are excited in the case of longitudinal pumping, as well, at Hy > H,
when Schlémann’s theory gives k = 0.

Returning to the parametric excitation of magnetostatic waves in films, consider
now the influence of exchange interaction, which may not be neglected (Sec-
tion 7.2) for sufficiently thin films, e.g., for YIG films with thickness smaller than
several micrometers. The theory of parametric excitation of spin waves in such
films was developed by Lukomskii and Kuz’ko [259] and by Vendik, Kalinikos,
and Chartozizhskii [421, 422]. The most interesting effect observed in this case is
the successive excitation of waves at different branches of the spin-wave spectrum
(Section 7.2) when frequency or steady magnetic field is continuously changing.

Consider, e.g., the longitudinal pumping of backward volume waves in a tangen-
tially magnetized film [207]. The spectrum of these waves is shown schematically
in Figure 10.7(a). At each branch of the spectrum, threshold field decreases with
decreasing k due to the growth of ellipticity. At large Heo, the frequency wp/2
lies below the bottom of the spectrum, and the first-order parametric process is
impossible. With decreasing H., the entire spectrum descends; at a certain value
of Heo = H, the lower branch attains wp/2, and parametric excitation begins.
With further decrease of H.o, the point wp/2 moves along the lowest branch, and
h e decreases. At a field H, [Figure 10.7(b)], the threshold point jumps onto
the branch with n = 2, then it moves to the left along this branch, and so on. As
n values grow, the frequency intervals between branches increase, and one can
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0.4, 1 1 1 1 1
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FIGURE 10.7

Paramentric excitation of spin waves in a thin (0.5 xm) tangentially magnetized YIG
film under longitudinal pumping: (a) spectrum of spin waves propagating along M,
(b) experimental field dependence of the threshold [207]. Spectrum is shown for H. o = H;.
Arrows indicate the movement of ‘threshold point’ (wi == wp/2) with decreasing H.. Bold
lines correspond to the portions of the spectrum at which parametric excitation takes place.
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observe the regions of h,w, separated by gaps, in which h, 4 values exceed the
ac field attainable in this experiment. Figure 10.7(b) corresponds to d = 0.5 um;
with the increase of film thickness the branches of the spectrum will approach
each other, and the curve A, g,(H,¢) will turn into a monotone left ‘wing’ of the
butterfly curve (as in Figure 10.6).

10.4.2 Ferrite parametric amplifier

It is clear that pumping can result, as well, in amplification (which can be called
parametric amplification) of oscillations or waves excited in a nonlinear medium by
an external source. Parametric amplifiers for microwaves have been designed using
the nonlinearity of different media: semiconductors, electron streams, etc. [256].
Suhl [393] (see also [394]) suggested the use of the nonlinearity of ferromagnet
(ferrite). Three types of ferrite parametric amplifiers can be realized depending
on what modes are used: (i) a magnetostatic amplifier when both modes are
magnetostatic modes; (ii) an electromagnetic amplifier when both modes are
electromagnetic eigenmodes of a resonator (or normal waves of a waveguide);
(iii) a semistatic amplifier when one of the modes is magnetostatic and the other
is electromagnetic.

The pumping power required for the parametric-amplifier operation is mainly
determined by the filling factor q of a resonator with ferrite. For a magnetostatic
amplifier, the resonator is the ferrite sample itself and ¢ ~ 1. For an electro-
magnetic amplifier, ¢ < 1. That is why the pumping power of a magnetostatic
amplifier is the lowest, and the pumping power of an electromagnetic amplifier
is the highest. However, a great shortcoming of a magnetostatic amplifier (char-
acteristic of an electromagnetic amplifier, as well) is the parametric excitation of
spin waves, the threshold for which, as we have seen, is lower than the threshold
for parametric excitation of magnetostatic modes. It is usually lower than the
threshold of parametric amplification of these modes, too. The energy of the
excited spin waves is partially transformed, as a result of two-magnon processes,
into energy of certain long-wavelength modes and is perceived as noise.

The ferrite parametric amplifier realized first by Weiss [437] was an electro-
magnetic one. The pumping power being as high as 20 kW, the amplifier was able
to operate only in a pulse regime. The magnetostatic amplifier was designed by
Denton {88]. Walker’s modes (3, 1, 0) and (3, —1, 1) of a YIG sphere with eigen-
frequencies, respectively, 4.56 GHz and 4.62 GHz were used. The bandwidth of
this amplifier was ~ 100 kHz, and the gain at central frequency was 20 dB, with
pumping power, at frequency 9.18 GHz, of 450 mW. The noise factor exceeded
10 dB as a result of the excitation of spin waves.

Numerous investigations with the aim, in particular, to design a travelling-wave
amplifier [404] or to use an open dielectric resonator [278], do not result in any
material reduction of the noise factor. At present, the ferrite amplifier cannot
compete with other types of microwave amplifiers, first of all, with semiconductor
amplifiers in which the present-day transistors are used.
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10.4.3 Nonuniform pumping

Consider, first, the case when the pumping field is present (and has a constant
value) only in a small part of the sample. The problem of parametric excitation
of spin waves under such (local) pumping does not differ, in principle, from the
problem of excitation of spin-wave with allowance for their scattering at sample
boundaries, which was discussed in the preceding section. In both cases spin waves
come out of action when reaching certain surfaces. Therefore, expression (10.54)
is also valid in the case of local pumping.

One can see from (10.54) and (10.55) that the threshold is higher the smaller the
dimensions of the pumping region and the larger the group velocity of the excited
waves. These dependences were verified experimentally in the case of longitudinal
pumping using a YIG single-crystal film [281]. Uniform pumping was achieved
by putting the film into a hollow resonator, and local pumping, by putting open
dielectric resonators with different € (and, hence, with different dimensions) onto
the film. The experimental data is shown in Figure 10.8. At Hy < H,, the
threshold field does not depend on the dimensions of the pumping region. In
such fields, spin waves with k ~ 10%-10° are excited, and their group velocity
does not exceed ~ 105. At Hy > H,, the magnetostatic waves with k& < 10°
are excited, their group velocity (due to the influence of boundary conditions) is
of the order of 10%. According to (10.54) and (10.55), the decrease of pumping-
region dimensions leads, then, to a noticeable increase of A, wr, in agreement with
experiment.
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2.5+
3.5%3.5 mm?2
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o
96, L3 /5.5x7 mm?
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0.5r
0 , , " A
2.6 2.8 3.0 3.2

H,o(kOe)

FIGURE 10.8

Threshold fields for longitudinal pumping in a normally magnetized YIG film vs external
steady field for different dimensions of the pumping region [281]. Thickness of the film is
16 pum, pumping frequency is 9.37 GHz, room temperature.
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Another important case of nonuniform pumping is the excitation of spin waves
under the action of a running wave. Assume, at first, that the pumping wave is a
uniform plane wave with frequency w, and wave vector k,. The excited modes are
also uniform plane waves with frequencies w12 and wave vectors k; . We restrict
our treatment to the first-order process. Then, besides the condition (10.17) with
n = 1, the condition of space synchronism

ki +ky =k, (10.71)

is to be satisfied. In corpuscular ‘language’, (10.71) is a condition of the im-
pulse conservation, whereas (10.17) is a condition of energy conservation in each
elementary process.

In a way similar to the one used in deriving equations (10.13), we obtain the
system

'—] = iwic + CpCh '—; = —1i C* —ip} C* (10 72)
w W C S
1t 1€] P12 p-2 d¢ 26 P12 p¢l

where ¢p, ¢1, and ¢, are normal variables for the pumping wave and the excited
waves, respectively, and p ; is the coupling coefficient, which depends on wy and
wu, as well as on frequencies and wave vectors of all three interacting waves. If
ky < k1p,sothat k) = —ky,ie., 0 Xm -6, =60 and g, S+ ©2 = ¢k, the
coupling coefficient can be written in the form

P12 =pi2i+p12 (10.73)

where p1 | is given by (10.14) and

2
wh . . . .
pra| = ﬁ”; sin 26, exp (—iyp) sin® B exp (2igy) . (10.74)

Comparing (10.72) and (10.74) with expressions (10.40) and (10.41), we see that
the combined action of quasiuniform transverse pumping and quasiuniform longi-
tudinal pumping is present in this case; the effective pumping field for longitudinal
pumping is

h, = % sin 26, exp (—icpp) Cp. (10.75)
It can be shown that k., is nothing but the z component of the magnetic field (7.12)
of the pumping wave.

Maximization of the coupling coefficient, e.g., in the case of 8, = 45°, shows
that, at w, > wys/2, the first term in (10.73) dominates. Thus, the waves with
0 = 45° are excited (Section 10.2), and the threshold magnetization is close to
that for uniform transverse pumping. At w, < wp/2, the term p;, || dominates,
waves with 6, = 7/2 are excited, and the threshold magnetization differs from
that for uniform transverse pumping by the factor 2w, /w .

Consider now a surface wave in a tangentially magnetized film (Section 6.2).
As the ac magnetic field of this wave has negligibly small z component, the
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First-order parametric spin-wave excitation by a surface magnetostatic wave: (a) frequen-

cies of the pumping waves (wp) and twice the spin-wave frequencies (2w ), (b) experimental
threshold values of input power vs wp [168].

pumping is transverse. We will limit ourselves to the first-order process and
suppose the excited modes to be uniform plane spin waves, which can be justified
for not-too-thin films (d 2> 5 um for YIG). The boundaries of the region in which
the first-order instability of such waves takes place under pumping by a surface
magnetostatic wave are shown in Figure 10.9(a). The frequency wmax is the upper
boundary of this region for the pumping wave with a given wave number k. The
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FIGURE 10.10

Dependence of threshold values of input power and magnetization on wave number of a
pumping surface wave k, at wp = 3.26 GHz [71]. YIG film with thickness 15.2 pm, room
temperature. Dashed line denotes the theoretical threshold magnetization.
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lower boundary of the region is the lower frequency wy at which the surface wave
with given k; exists. However, between wp and the frequency we, the threshold
fields are high because only exchange spin waves with large k& can be excited.
These conclusions agree rather well with experiment [Figure 10.9(b)].

The experimental k, dependence of the threshold power Py, at the input of a
transducer that excites the pumping surface wave is plotted in Figure 10.10. The
values of the pumping-wave magnetization, which were found from the threshold
power Py, are shown as well. These experimental values are somewhat larger
than the values (1 4 mr )teor calculated by minimization of (10.23). The difference
is apparently due to above-discussed effect of local pumping. As for the strong
dependence of Py, on k;, (Figure 10.10), it is caused mainly by the change of the
pumping-wave group velocity.

For volume magnetostatic waves in films, the longitudinal component of an
ac magnetic field is comparable with transverse components, and the obligue
pumping takes place.

10.5 Above-threshold state

In the preceding sections of this chapter, only thresholds of spin-wave parametric
excitation were considered, i.e., the values of an ac magnetization or field at
which the exponential growth of spin-wave amplitudes (the spin-wave instability)
begins. But the growth of these amplitudes cannot be unlimited, and a certain
limiting state should exist, either a steady state (with constant amplitudes) or
an unsteady one (characterized by periodic self-oscillations or chaotic change of
these amplitudes). The unlimited exponential growth of spin-wave amplitudes
was obtained because we took into account only the lowest nonlinear terms in the
equations of motion. Now, studying the above-threshold states, we must take into
account the higher-order nonlinear terms, too.

The simplest reason (‘mechanism’) for the limitation of growth of the paramet-
ric spin-wave amplitudes is that the total ac magnetization cannot, in any case,
exceed My. However, we will see that the limitation usually occurs much ear-
lier due to other mechanisms. At least three such mechanisms exist: reaction of
parametric spin waves on pumping, phase mechanism, and nonlinear damping. In
studying these mechanisms, we will limit ourselves to the case when parametric
spin waves may be regarded as uniform plane waves and the pumping field is
uniform.

10.5.1 Reaction of parametric spin waves on pumping

The energy transferred to parametric spin waves is an additional source of losses
for the pumping. In the case of longitudinal pumping, the growth of parametric
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Graphical solution of equation (10.76) [392]. Solid lines correspond to the approxima-
tion (10.77) and dashed line, to the actual dependence of wrox on ag (schematically).
© 1957 Elsevier Science Ltd.

spin waves leads to the decrease of the quality factor @ of the resonator in which
the sample is placed and, hence, to the slowing down of the increase of h, with
growing input power. However, the volume of the sample is usually much smaller
than the resonator volume, and the decrease of Q turns out to be small. Therefore,
this mechanism does not play any important role in the case of longitudinal
pumping.

For transverse pumping, this mechanism can be taken into account by intro-
ducing an additional dissipation parameter w; ¢, so that [compare with (10.12)]

~h
@o — wp + i(wro + wrok)

ad = (10.76)

In the case of first-order process, the growth of parametric spin waves begins from
a very low (thermal) level. The dependence of w;, on ag can be approximated,

then, as [392]

0 at al<af
Wrok = g Qdr (10.77)
00 at ay > agy,

Equation (10.76), allowing for (10.77), can be solved graphically as shown in
Figure 10.11. With the growth of A, the amplitude aJ increases linearly until h and
ag reach their threshold values. Then the increase of a ceases, and its threshold
value ‘freezes’. So,

0 { Yh/ (@0 — wp + iwro) at k< hyy (10.78)

an =
0 agmr at  h > hye

where agy, is determined by (10.23).
Neglecting the difference between &y and wo, we can find from (10.76) and (10.78)
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Imaginary parts of the nonlinear susceptibility vs the above-threshold ratio for the first-
order parametric spin-wave excitation under transverse pumping: (a) at resonance and
(b) off resonance [392]. Dots represent experimental data for a tangentially magnetized
disk of Mn ferrite at frequencies (a) 4.04 GHz and (b) ~ 9 GHz. The curves are calculated
using (10.80). © 1957 Elsevier Science Ltd.

the expression for the total dissipation parameter

Wro + Wrok = \/(7(2 — 1) (wo - wp)2 + (2wr20 (10.79)

where ¢ = h/hyy is the above-threshold ratio. To calculate the components of the
nonlinear susceptibility tensor we must substitute the dissipation parameter (10.79)
into the expressions for susceptibility components cited in Section 1.5. We obtain,
then, e.g.,

X(}’—n — __1_ (CZ _ 1) (LU() —wp)2 + CZ (10.80)
Xy ¢? wr20 .

where x'f and X' , are imaginary parts of the linear and the nonlinear right-hand
circular susceptibilities. The calculated dependences of the ratio (10.80) on ¢ and
the corresponding experimental data are shown in Figure 10.12. The disagreement
between experimental data and the calculated curve in Figure 10.12(b) is due to
another mechanism of spin-wave amplitude limiting, the phase mechanism, which
will be discussed below.

Consider now, following Suhl [395], the steady state above the second-order-
instability threshold. This case differs from the above-considered one in that now
the potentially unstable spin waves (with wy = wp) are excited, as well, due to
the process of two-magnon scattering (already discussed in Section 10.3). This
process also results in additional excitation of the pumping mode by the parametric
spin waves. To allow for these processes we have to add, in equations (10.24)
and (10.5), the terms similar to those that have been inserted, with the same
purpose, in equation (10.50); the term v 9ao should be added in (10.24) and the
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Influence of two-magnon scattering on the nonlinear susceptibility for the second-order
parametric spin-wave excitation [395].

term Ek;eo Vo kCk, in (10.5).

It is necessary, then, to make the replacements wy — wp + iw?o and wy, —
w + iwy, where w%) and w?, are the dissipation parameters without allowing for
two-magnon scattering. Assuming that w?k, Vo, and vk ¢ do not depend on k, we
obtain at resonance (wp = wp)

ivh
AQres = . (10.81)

0 s 0 0 (4712
Wro + Wro [1 - (a'Ores/a()thr) ]

One can see from this expression that the effective dissipation parameter of the
pumping mode infinitely increases when aJ .. approaches ad - Hence, af ..
reaches ag;, only in the limit of h — co. However, a ‘threshold’ field can be
formally defined as hurer = 0§y, Mo/ X! (s (Where X'f res 18 the linear suscepti-
bility), and the above-threshold ratio can be also defined as before: ¢ = h/hgres.

Then, the equation

= 1+s
L+s(1—n*/c4) '/

where 1 = XY | oo/ X\ res and s = wiy/wY, follows from (10.81). The curves
n(¢) for different values of s, calculated by solving this equation, are plotted
in Figure 10.13. One can see that the threshold of the second-order spin wave
instability is ‘smeared out’ stronger the larger the contribution of two-magnon
scattering to the dissipation parameter.

(10.82)

10.5.2 Phase mechanism

The phase mechanism of limiting of parametric-spin-wave growth above thresh-
old was suggested by Zakharov, L’vov, and Starobinets [459] (see also [265]).
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This mechanism consists in the change of the phase shift between pumping and
parametric spin waves, which leads to the decrease of coupling between them with
the growth of the pumping field. The phase mechanism plays the most important
role for longitudinal pumping, and in discussing it we will restrict ourselves to
this case.

To analyze the phase mechanism the following third-order terms must be in-
serted in equation (10.40) and the adjoint equation:

2iZTk lekalCZl +iZSkk|C*—kck|C—k1~ (10.83)
k) ky

Then, these equations turn into the equation

d . W . N
[& +wrk — i (w - 7‘”)] A —iPc% =0 (10.84)
and the adjoint one where
Wk = Wk +22Tkk1!62|'2 (10.85)
ki
Po=hVi+ > Skrcl, %y, (10.86)

k1
Comparing (10.84) with (10.40), we see that the added terms result first in
the change of spin-wave eigenfrequencies and second, in the ‘renormalization’ of
pumping, i.e., in the replacement of the external pumping h. Vi by the effective
pumping Py. It can be shown that, above the threshold,

- wp\?
|Px| = \/w,zk + (wk - 7") . (10.87)

According to [459], we introduce new variables nj and v, defined by the
following relations (note that |cx| = |c_|):

. . h .
A, = exp (1B +iB-k) = 2%/1—07% exp (ive) . (10.88)

The quantity ns characterizes the intensity of parametric spin waves with wave
vectors k and —k and is equal to the number of corresponding magnons. The
quantity vy is the sum of phases of spin waves with k and with —k. It should
be emphasized that only the sum of these phases is determinable, the difference
of them is arbitrary. This means that parametric spin waves are only partially
coherent.

The new variables satisfy the equations following from (10.84):

dnk

el {~wek +Im [P exp (ivn)] } (10.89)
d .
% =2 {@k _ % +Re [P} exp (n/);c)]} . (10.90)
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It can be shown, using these equations, that, in a steady state above threshold, only
spin waves with a certain pair k and —k of wave vectors (for which the threshold
is the lowest and, hence, @y = wp/2) do exist. The solution of (10.89) and (10.90)
for these waves has the form [459]

_1/ 2 2 . _ Wrk _ Sng
ng = 5 (h: V) —wi, sin ¥y = v cos Py = hV (10.91)
where
_ 1 wm ’ 24,2
$= (w—p) (,/wp +wl — wu +nyzM0) (10.92)

V= ’Vk (325)) :7%‘1. (10.93)

One can see from (10.91) that ¢ = /2 at threshold (h,V = w;x), which is the
optimum condition for energy transfer from puraping to parametric spin waves.
With the growth of h, this phase relation gets broken, and v approaches 7 at
h, — o0.

With the use of (10.91)-(10.93), the z component of uniform ac magnetization
m and the nonlinear susceptibility x., = m,/h, = X/, ,—ix7 , canbe calculated:

! —%ECZ_“I " —%V_2____VC2_1 (10.94)
Xzn = v S C2 Xzn = v IS' <2 N M

These expressions are in rather good agreement with experimental data by Zautkin
et al. [460] at ( < ( ~ 7 (Figure 10.14), which shows the dominant role of
the phase mechanism for longitudinal pumping, in any case, if ( < (». The
phase mechanism operates for transverse pumping as well, especially for the
off-resonance first-order process. This mechanism is responsible, e.g., for the
deviation of experimental points in Figure 10.12(b) from the calculated curve.

10.5.3 Nonlinear damping

The mechanism of nonlinear damping is caused by the dependence of w; ; on the
parametric-spin-wave amplitudes. The most prominent example is the contribu-
tion of the elementary confluence process of two parametric magnons. This effect
was studied by Gottlieb and Suhl [148]. The contribution of it to w; x is positive
and proportional to the number of parametric magnons. This process is allowed
by the conditions of energy and impulse conversation if Hy < Hj., where

1
Hacn = Hoe(01) = & (\/4%3 +wd, sint By — \/wg +wd, sin“&k) (10.95)

[Ho. (8x) is given by (7.18)].
Three-magnon processes with participation of only one parametric magnon
can also contribute to nonlinear damping because, at large numbers of parametric
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Dependences of real and imaginary parts of nonlinear susceptibility on the above-threshold
ratio for longitudinal pumping [460]. Dashed curves are calculated with (10.94), solid
curves are calculated allowing for the excitation of the second group of spin waves (see
below); the starting point of this excitation is denoted by an arrow. Circles correspond
to experimental data for YIG sphere at frequency 9.4 GHz, room temperature, and Hy =
H. — 100 Oe (H, |} (111)).

magnons, the numbers of thermal magnons begin to differ from their equilibrium
values. It is easy to make sure that the nonlinear contribution of such confluence
process is negative, and the contribution of a splitting process is positive, and both
are proportional to the number of parametric magnons. In the case of longitudinal
pumping in a sphere (8 = 7/2), as L’vov and Fal’kovich have shown [264], the
former contribution exists at Hy < Hj3, where

4 1
Hs. = % (-—wp - —wM> (10.96)

and the latter, at Hy < H3 where

2 1
Hy, =H, - > (,/wg +w, — T w%) : (10.97)

The combined action of phase mechanism and nonlinear damping can be ex-
amined, in the case of longitudinal pumping, if we assume, in equation (10.88),
that wrx = Wrro + Wrkn Where wrgy is the contribution of nonlinear damping.
The nonlinear susceptibilities above threshold calculated in this way are shown
in Figure 10.15. One can see that, at small ¢, positive nonlinear damping leads
to the decrease, and the negative one leads to the increase of x’/,. Such behav-
ior is confirmed by experimental data presented in Figure 10.16. The signs of
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Influence of the nonlinear damping on the ¢ dependences of the nonlinear susceptibility for
longitudinal pumping [459].
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Field dependence of the nonlinear susceptibility for longitudinal pumping [275]. YIG
sphere, Hy || (100), f, = 9.37 GHz, room temperature, ¢ = 1 dB. The fields Hj, Hic,,
and Hj, are calculated with formulae (10.95)—(10.97) with an anisotropy field 2| Ha 1|
added.

X7, quick changes and the experimental steady-field values at which they occur
(after a correction for the magnetocrystalline anisotropy) agree with theoretical
values (10.95)-(10.97). At sufficiently large {, the opposite effect takes place
(Figure 10.15). Besides, one can see from Figure 10.15 that negative nonlinear
damping results in hysteresis or ‘hard’ excitation of parametric spin waves.



10.5 Above-threshold state 279

10.5.4 Stability of the above-threshold state

It must be pointed out, first of all, that a distinction needs to be drawn between the
external stability (relative to the birth of other groups of parametric spin waves)
" and the internal stability (relative to small changes of the amplitude and phase of
the primary group).

For longitudinal pumping, the primary group has 8;, = 7 /2 and amplitude and
phase determined by (10.89) and (10.90). This state remains stable relative to
the creation of another group of spin waves (external stability) until the effective
pumping (10.86) for the new group reaches the value of w; . Using this condition,
it was found [459] that, in an isotropic ferromagnet, the external stability retains
up to ¢ = 3.5. Then the spin-wave group, with @y = wp/2, as before, and
0, = 50°, is excited. Experiment [238] has shown the occurrence of a new group
with 6y, = 45—50° but at larger ¢ value, of the order 10-20. The distinction is,
evidently, due to the dependence of w;; on 6. With further increase of {, new
groups of spin waves with &y, = w,,/2 are excited.

To examine the internal stability we must add a small deviation « to the spin-
wave amplitude and, using equation (10.84), see whether a will grow or damp
out with time. If the internal stability does not take place, the collective self-
oscillations, uniform or nonuniform, of amplitudes and phases of parametric
spin waves occur (see review articles [265, 327]). They manifest themselves as
oscillations of magnetization, and hence, of the power absorbed by the sample.
The frequencies of the oscillations usually lie in the range from tens of kilohertzes
to tens of megahertzes. At small ¢, their shape is near sinusoidal, at larger ¢, it
differs essentially from sinusoidal, and at still larger, it becomes chaotic [327].

Calculation performed for longitudinal pumping in a cubic ferromagnet [459]
showed that under assumed conditions (YIG, frequency of 9 GHz, room temper-
ature), the internal stability (relative to uniform deviations) takes place for My
directed along (100) axis and does not for My || (111). This is in agreement
with the experimental fact (see, e.g., [256]) that, in YIG under the mentioned
conditions, self-oscillations are observed for My || (111} and are not observed if
M || (100).

10.5.5 Nonlinear microwave ferrite devices

Let us discuss briefly the practical significance of the nonlinear phenomena con-
sidered in the present chapter. First, the parametric excitation of spin waves
restricts the dynamic range of linear ferrite devices, which are widely used in
microwave systems and are starting to be used in optical systems, too. Serious ef-
forts have been made to increase the thresholds of parametric spin-wave excitation
in materials intended for use at high microwave power levels. One of the ways,
which consists in decreasing the grain dimensions of polycrystalline ferrites, was
mentioned in Section 10.4.

Second, as has also been mentioned, the measurement of parametric spin-
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FIGURE 10.17
Ferrite small-signal suppressor using a surface magnetostatic wave [6]. Thickness of the
YIG film is 26.6 um, H.o = 425 Oe.

wave excitation thresholds, especially with longitudinal pumping, is a common
technique for determining the dissipation parameters of ferrite materials.

And finally, the above-threshold phenomena, studied in the present section,
are applied for designing nonlinear ferrite devices. One of such devices is the
power limiter, e.g., a nonlinear quadripole the output power of which remains
approximately constant in a certain range of input power. Such a device is needed,
e.g., to protect the input circuit of a microwave receiver against overloads.

To develop a microwave power limiter the off-resonance first-order process of
spin-wave parametric excitation with transverse or longitudinal pumping can be
used. The ferrite sample in a resonator or waveguide, being far from ferromagnetic
resonance, practically does not absorb electromagnetic power below the threshold,
so that the losses at low signal level are small. Above the threshold, the losses
increase due to the parametric excitation of spin waves. Because of the above-
discussed ‘freezing’ of pumping amplitude in the first-order process, the output
power remains approximately constant in a rather broad dynamic range.

Another type of ferrite power limiter uses the parametric excitation at ferromag-
netic resonance and therefore has (if the first-order process is applied) much lower
threshold power. The ferrite sample in this device reradiates microwave power
into an ‘orthogonal’ (i.e., uncoupled in the absence of ferrite) waveguide. It was
shown in Section 5.4 that the losses of such a device, a ferrite band-pass filter, are
small at low power level. At high power level, above the threshold, the pumping
amplitude ‘freezes’, and the losses increase. The threshold input power of such a
filter-limiter, using the first-order process, is as small as several microwatts, and
the dynamic range can be 2040 dB. However, the first-order process is possible
only at low frequencies, e.g., lower than ~ 3 GHz for YIG at room temperature.
At higher frequencies the second-order process must be used, and the threshold
power substantially increases.
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It was pointed out in Section 5.4 that a ferrite band-stop filter can be made,
as well. Its simplest design is again a waveguide with a ferrite sample but at
ferromagnetic resonance. Such a device operates as a small-signal suppressor: at
input-power level lower than the threshold of spin-wave parametric excitation, the
losses are high, and above the threshold, the losses decrease because the absorbed
power is being limited. The threshold is low and the decrease of losses at high
power level is essential if the first-order process of parametric excitation is used.

The frequency band of the ferrite small-signal suppressor can be materially
enlarged when, instead of ferromagnetic resonance in a sample, a magnetostatic
wave in a film is excited. It is expedient to use the surface wave in a tangentially
magnetized film (Section 6.2) and, of course, the first-order process. Such a
device [6] was suggested by Adam and called the ‘signal-to-noise ratio enhancer’.
Its design and characteristics are shown in Figure 10.17.
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Spin—spin relaxation

11.1 Relaxation processes in magnetically ordered substances

The dissipation of energy of magnetic oscillations and waves was treated in the
preceding chapters only phenomenologically. Now we begin to study the physical
processes that determine the relaxation. This chapter and, to a large extent,
Chapters 12, 13, and 14 will be devoted to this problem.

The relaxation processes move a system to the state of thermodynamical equi-
librium. If the forces that had removed it from this state stopped their action,
the relaxation processes bring the system to equilibrium. We are interested in the
case when in nonequilibrium state there exist one or more modes with amplitudes
exceeding their equilibrium values. Then, after the external forces that had ex-
cited these modes stop their action, the energy they had passed to these modes is
redistributed between all eigenmodes. The relaxation processes determine, in this
case, the rate of the decrease of the nonequilibrium mode amplitudes.

However, if the external forces excite some modes continuously, the equilib-
rium state, of course, will not be reached. The system will remain in a steady
nonequilibrium state, in which the amplitudes of the modes excited by the external
forces, as well as of some other modes strongly coupled with them, will exceed
the equilibrium levels. The relaxation processes now perform the steady energy
flow from the modes excited by external forces and determine the dissipative pa-
rameters of the system for forced oscillations, i.e., the anti-Hermitian parts of the
sucseptibility tensor components (Section 4.4).

11.1.1 Kinds of relaxation processes

The system we are interested in is the magnetic system of a magnetically ordered
substance. Its eigenmodes are the uniform and nonuniform oscillations and spin
waves (or magnons, in terms of corpuscular theory), which were studied in detail
above. Some relaxation processes result in the redistribution of energy between the
modes of the magnetic system, i.e., in the destruction of magnons excited by the
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Flows of energy in magnetically ordered substances.

external fields and creation of other magnons. Such processes are called spin—spin
relaxation processes. They can be subdivided into inherent spin—spin processes,
which are characteristic of ideal crystals, and processes caused by defects. The
latter can be regarded as scattering of magnons by defects.

The electronic magnetic system'is coupled with other systems of the magnet-
ically ordered substance: lattice, free charge carriers, nuclear magnetic system.
Therefore, the relaxation processes exist which carry the energy from magnetic
system to other systems. In most cases the energy is transferred finally to the
lattice that results in heating it (i.e., in the creation of phonons, in terms of cor-
puscular theory). Therefore, all relaxation processes that result in the flow of
energy from the magnetic system are called often spin-lattice processes. They
are subdivided into direct and indirect spin-lattice processes. The first are such
in which magnons are destructed and, simultancously, phonons are created. In
indirect processes energy is transferred into lattice through some other systems.

The concepts of spin—spin and spin—lattice relaxations were introduced first in
the theory of paramagnetic relaxation [68]. In magnetically ordered substances, in
which the eigenoscillations are collective modes, these concepts differ essentially
from those in paramagnets. In particular, in magnetically ordered substances,
as distinct from paramagnets, the relaxation rates of longitudinal and transverse
magnetization components are nearly the same and are determined by both the
spin—spin and spin-lattice processes [17].

In Figure 11.1 the energy flows are shown which arise in the magnetic system
of a ferromagnet and between this system and other systems in a stationary regime
when an electromagnetic field excites the uniforrn mode of magnetic oscillations
(k = 0 magnons).

IWe deal with this system all the time omitting the word ‘clectronic’.
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11.1.2 Methods of theoretical study

The relaxation processes in magnetically ordered substances were first studied
theoretically by Akhiezer [10]. Since then a lot of works have been devoted
to this problem (e.g., monographs and reviews [171, 376, 14]). Two methods
were mostly used: the method of coupled equations of motion and the method of
transition probabilities (or kinetic equations).

The method of coupled equations of motion? is based on the fact that relaxation
processes are caused by the interaction of different modes. The allowance for this
interaction leads to coupling of the equations of motion of the modes. It results in
the energy transfer from one mode to the other, i.e., in the relaxation.

The method of transition probabilities is based on the fact that relaxation pro-
cesses are the transitions of the system from one state into another, and the
quantum-mechanical time-dependent perturbation theory (e.g., [243, 336]) can be
used to calculate the probabilities of these transitions. It has been shown [66] that
this method gives the same results as the method of coupled equations of motion.

More powerful theoretical techniques were used later to study the relaxation
processes in ferro- and ferrimagnets, in particular, the method of Green func-
tions [412]. We will use only the transition probability method, as the most
simple, universal, and illuminative.

According to the time-dependent quantum-mechanical perturbation theory [243],
the number of transitions per unit time from the state [ into the state m under the
action of time-independent perturbation is

Wi = %](m|7:lp|l)|26(€[ —€m) (11.1)

where (m|7:{p|l) is the matrix element of the perturbation energy operator ’fip for
transition between states [ and m, ¢; and ¢, are the eigenvalues of energy in these
states, and 6(x) is the Dirac delta function (Appendix C).

Employing the transition-probability method to study the relaxation processes,
we have to pass to the secondary-quantization representation (Section 7.4), in
which the transitions from one state to another are the changes of the numbers of
quasiparticles: magnons, phonon, etc. The energy operator (Hamiltonian) of the
magnetic system can be written in this representation in the form

H=Uy+Hs+H, (11.2)
where 7:(2 is the quadratic Hamiltonian that, in the case of the Heisenberg model,

was considered in Section 7.4, and H,, contains terms of higher order in operators
[1;: and ay.

2This method was widely used in Chapter 10.
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In an ideal (perfectly periodic) crystal the operator ﬂp has the form? [214, 14]
Ho=> 3> Winiiagaf Ak — k2 — k)
1 2 3

+3 33N Wi asaiagag af Ak — ka — ks — ka)
1 2 3 4

+ Z Z Z Z \1/12,34&1&25,;&:.’3(’61 +ky — k3 — k4)
1 2 3 4

+ higher terms + H.c. (11.3)

Here, W1 23, U1 234, and ¥ 34 are certain complex quantities, A is the Kronecker
delta symbol (Appendix C), and H.c. denotes Hermitian conjugate terms. It should
be noted that &} and & are conjugate operators, and the sequence of operators
changes to opposite when conjugating.

Each term of the Hamiltonian (11.3) contributes only to the matrix element
(ml'F{pll ) that corresponds to the transition from state [ to state m; in this transition
the numbers of quasiparticles whose creation operators appear in the considered
term increase by 1, and the numbers of quasiparticles whose annihilation operators
appear in this term decrease by 1. For example, the term G435 a3 gives such a
matrix element that n, decreases, and n, and n3 increase by 1. This matrix
element has the form [84]

(n1 — 1,n2 + 1,m3 + 1|[Hp|ny, 2, n3)
= \/7'7](712 + ])(n3 + 1)\1/1’23A(k1 —ky — k3). (11.4)

The Hermitian conjugate term gives the matrix element

(m +1,n—1,n3— lal|’n1, nz,n3) =4/ (n1 + 1)’!%27?,3\1”;’23A(k] —ky — k3).
(11.5)
Thus, each term of the perturbation Hamiltonian ’1‘:{,, (and hence the associated
matrix element) corresponds to a certain elementary process, and the Hermitian
conjugate term corresponds to a reverse process. For example, the term &1?1;' &;L
and the matrix element (11.4) correspond to an elementary process of splitting of
a magnon into two magnons, and the term a3d,a; corresponds to an elementary
process of confluence of two magnons. The term @;a,a7 a; corresponds to an
elementary process of scattering, in which two magnons are annihilated and two
others are created.*
The presence of the delta function in (11.1) results in conservation of energy,
and the delta-symbols in (11.3), (11.4), or (11.5) lead to momentum conservation
in each elementary process. The momentum conservation, as distinct from energy

conservation, is a consequence of the ideality of the crystal and does not take

3Here and below the indices 1, 2, 3, ... denote k|, k3, k3, - - ..

4These elementary processes were already considered in Chapter 10.
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place (in each elementary process) for such perturbations that make the crystal
non-ideal.

We are usually interested in the rate of change of the numbers of quasiparticles
with given ¢; and k; due to the elementary process of a certain type. We must
then sum the probabilities (11.1) over allowed values of all other quasiparticles
that take part in this process. The elementary processes both direct and reverse
must be taken into account. Then we obtain such expressions as

d 2 - -
T F L [+ [ )] b — em). (116)
2 3

Here, I’ and m' denote, respectively, the initial and the final states for direct
processes, and [" and m"” denote such states for reverse processes. The expression
(11.6) is a kinetic equation for the number n;. Its right side is called the collision
sum (or the collision integral if we pass from the summation over k values to the
integration over k spaces).

The existence of delta functions in (11.6) and delta symbols in the expressions
for matrix elements restricts the regions in k spaces over which (after exclusion
of the delta function and delta symbols) integration should really be carried out.
For example, in the case of a three-particle process the integration will be carried
out over a surface in one of spaces k; or k3.

Not only n; but also numbers ny,ns, . .. of other quasiparticles appear in the
right side of (11.6). They, in their turn, depend on the rates of all processes in
which these quasiparticles take part, and kinetic equations for them must be also
written. Thus, we get a chain of more and more complicated kinetic equations.

The matter is materially simplified if we assume that all numbers n,,ns, .. .
except n do not differ from their equilibrium values 7i,, 73, . . .. This assumption,
as it was mentioned in Section 10.5, is valid only for small numbers n;. It is
satisfied in the theory of linear relaxation considered in this chapter. Magnons
may be regarded as Bose particles (Sections 7.3, 7.4), and their 7y, fi3, ... (as
well as 7i1) values can be obtained from (7.78). Then, the kinetic equation (11.6)
will contain only one unknown ;. This equation, as it will be shown by some
examples below, can be always represented in the form

dn1
dt
where wr 1 does not depend on n;. The quantity w,; is the frequency of relaxation
of the number n; to its equilibrium value 7; due to elementary processes of the
considered type. The reverse quantity 7,1 = 1/(2w,;) is the relaxation time.
As the numbers of magnons are proportional to the squared amplitudes of the ac
magnetization components, w; is the relaxation frequency of these amplitudes.
It represents a contribution of the considered processes to the phenomenological
dissipation parameter w, (Section 1.4).
Experiment yields directly only the entire parameter w,. To draw conclusions
concerning the contributions of different relaxation processes to this parameter

= 2w (ny — i) (11.7)
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we have to compare the experimental w, temperature or other dependences with
theoretical predictions, or to perform experiments in such conditions that stimulate
one or the other process.

11.2 Inherent spin-spin processes

The inherent spin—spin relaxation processes are caused by elementary processes
in which three, four, or more magnons take part. The probabilities of such
processes are, in general, greater the less the number of magnons taking part
in one elementary process. However, the threc-magnon processes cannot be
caused by the strongest, exchange interaction. The reason for this is that in these
processes the number of magnons, and consequently, according to (7.72), the
M, value are not conserved; whereas the exchange Hamiltonian commutes with
Mz, and therefore, the M, value must be conserved in processes resulting from
exchange interaction. The four-magnon scattering process, in which two magnons
are annihilated and two are created, can be caused by the exchange interaction.
Therefore, the probability of this process can be comparable with and, in some
cases, as we shall see, even higher than the probability of the three-magnon process
caused by the weaker, dipole—dipole interaction.

Three-magnon relaxation processes were first studied theoretically by Akhie-
zer [10] and then by Kaganov and Tsukernik [199], Akhiezer, Baryakhtar, and
Peletminskii [15], Sparks, Loudon, and Kittel [378], Schlémann [344], and many
others.

The factor ¥, 23 in (11.3) and (11.4) caused by the dipole—dipole interaction in
the long-wavelength approximation and without account for the third Holstein—
Primakoff transformation (Section 7.4) has the following form [10]:

Uip3=-7 g/lvo('yh)y2 [sin 20, exp(—ipy) + sin 263 exp(—im)] . (11.8)
Here, V' is the volume of the sample (that will be canceled afterwards), ;3 and
2,3 are the angles of k; and k3 vectors.

Two kinds of three-magnon relaxation processes are to be distinguished: split-
ting and confluence. They are based on the same elementary processes (Ta-
ble 11.1). But for the splitting, the elementary splitting processes are the direct
processes (leading to the decrease of the number of magnons of which the relax-
ation is examined) and the elementary confluence processes are the reverse pro-
cesses. For the confluence, on the contrary, the elementary confluence processes
are the direct processes and the elementary splitting processes are the reverse ones.
This distinction, as we shall see, leads to essentially different ranges of existence
of the processes and different contributions to the dissipation parameter.
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TABLE 11.1
Elementary processes in three-magnon relaxation processes.

Elementary processes?

Relaxation processes direct reverse

- ky k2>_>k
Splitting ky i' 1
ks ky
k) ky
Confluence k ) 4 ks _’i3<i A
2

@ Magnons of which the relaxation is considered are denoted by thick arrows.

11.2.1 Three-magnon splitting
According to (11.6) we can write for the splitting process:

dn 2w 1
T 2SS [l = tima 1 + 1, )P
2 3

+|(7L1 +1Lny—1,n3 — 1|H3d|n1,n2,n3)|2] 5(5@)1 — hwy — fws).
(11.9)

The factor 1/2 is inserted before the sum because the same states |n, n2,n3) and
|1, n3, ny) enter the sum twice. The matrix elements in (11.9) are obtained from
(11.4) and (11.5) by substituting the sum ¥y 53 + ¥y 3; for ¥; 23. The reason for
this is that both terms (11&3L d;’ and dld;'dg (for the direct processes) or &3&2&1+
and &2&3&?L (for the reverse processes) contribute to these matrix elements. And
as ¥y 23 = ¥ 37, the kinetic equation takes the form

dn 4
d_tl = —F Z E |\I/1,23]2[n1(n2 +n3+1)— n2n3]
2 3

x A(k) — ky — k3)o6(hwy — hwy — hws). (11.10)

Assuming now that the numbers n, and n3 are equal to their equilibrium values
and taking into account that dn;/d¢t = 0 if n; = 7, we make sure that (11.10)
may be written in the form (11.7) and obtain

2w
Wrp = ? Z 1\111,23|2(1—l2 + 73 + I)A(kl —ky — k3)6(ﬁw1 — hwy — flAU3).
2 3
(11.11)
The existence of A(ky — ky — k3) in (11.11) implies that the summation should
be carried out over the values of one of the vectors k, and k3, and the relation
k3 = ki — ky must be taken into account in writing ¥'; 3 and the delta function.
Passing then, as in the calculation of M (T') in Section 7.3, to the integration
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over the k; space, we get

V T 27 , _
(Wr1)ys = W/kz /ozzo/wzol‘l’l,zal M2+ A3+ 1)

X6 (hwy — hwy — hws) k‘% sin G,dk,d6,dy, (11.12)

where 8, and -, are the angles of the vector k;, and the limits of integration over
k, are determined by the energy and momentum conservation laws.

The existence of the delta function in (11.12) results in the integration over a
surface in k; space. Usually it is reasonable to pass from the delta function of
the energy difference to the delta function of a coordinate in k; space, e.g., to 6,.
Then the integration over this coordinate can be eliminated using the properties of
the delta function (Appendix C).

The calculations with formula (11.12) demand, in general, the use of computers.
Analytical expressions can be derived in high-temperature approximation

KT > hwy, hwy, hws, ... (11.13)

Then, i3 ~ kT /(hw3), and formula (11.12), with regard to (11.8), takes
the form

2w
(AHp), = =
Ed 27 |2 _: . s 2
_ l'yznTwlMo/ / / |sin 26, exp(—ig2)+sin 263 exp(—ies3)|
4 k2J62=0J =0 wa(wy — w2)
X6 (W) — wy2 — w3) k% sin 6,dk,d62d;. (11.14)

The given frequency w; is the largest for the splitting process. Thus, the condition
(11.13) reduces to kT' > Fuwy, which holds in the microwave range even at the
liquid-helium temperature.

Sometimes the high-frequency approximation

Wi, Wa, w3, ... > Y4r Mo = wy (11.15)

can be used. Then, we can employ the approximate spin-wave dispersion ex-
pression (7.14) and, as in deriving (11.14), ignore the third Holstein—Primakoff
transformation.

For the splitting of the uniform mode (k; = 0.w; = wy) it follows from the
conservation laws that k3 = —k; and w3 = w; = wp/2. The latter relation
holds only if wg/2 lies over the lower boundary of the spin-wave spectrum. The
condition for this, in the case of a spheroid, is

wo < 2vNj My (11.16)

where N is the demagnetization factor in the direction normal to the axis of
revolution. For a sphere, it follows from (11.16) that wy < 2wa/3. This
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Three-magnon splitting of «/2 magnons. (a) Regions in which the process is allowed.
(b), (¢) Frequencies and wave numbers of magnons in regions I and II, respectively (near
their boundaries k1 and k1) [239, 157].

relation coincides with the condition (6.10) for the passage of wq through the
upper boundary of the non-exchange spin-wave spectrum.

A rather simple analytical expression for the contribution of three-magnon
splitting to the dissipation parameter of the uniform mode can be found only in
the high-frequency approximation (11.15), which contradicts condition (11.16).
Therefore, this expression can be used only for a very rough estimate, which gives
(AH )35 ~ 0.03 Oe for YIG at 2.5 GHz.

The main method used in experimental investigation of spin-wave relaxation
in ferrites is the measurement of the thresholds of parametric excitation of spin
waves, especially under the longitudinal (parallel) pumping (Section 10.3). In
this case, in certain limits of the constant magnetic field Hy, the magnons with
0, = m/2 and k depending on Hy are excited. Let us consider the contribution of
the three-magnon splitting to the relaxation of such magnons.

It was shown by Lamaire, Le Gall, and Dormann [239] that there are two regions
of wy and k; in which the three-magnon splitting of magnons with §; = /2 is
allowed by the conservation laws (Figure 11.2). In the first region, w; < wypo =
2wy /3 and k; does not exceed kj{w) [Figure 11.2(a)]. Magnons with small
62,3 are created in this region [Figure 11.2(b)]. The second region exists at all




292 11 Spin-spin relaxation

0.4}
’6‘ 0.31 3C Asc
o
%Z 0.2
o1} TR
0 1 I L 1 L
0 12

4 8
ky (105 cm-1)

FIGURE 11.3

Contributions of inherent spin—spin relaxation processes to the dissipation parameter of
/2 magnons in YIG at room temperature [378]. Ho = 1.5 kOe, frequency changes as k
is varied, according to the magnon dispersion law.

frequencies but in very narrow ranges of k;: from ky to the limiting value k.,
which is determined (in an isotropic case) by the condition Hy = 0, i.e., actually,
by the rise of domains. Magnons with 6, 3 equal to or near 7 /2 are created in this
region. Taking into account that w, = ws always at the boundary of the region
and assuming 6, = 63 = 7/2, we get

2
wh = 24+ 0y — T + ). (11.17)

For YIG at room temperature and f; = w;/27 = 4.5 GHz (i.e., the pumping
frequency f, = 9 GHz), ky = 4.06 x 10° and k. == 4.28 x 10°.

The contribution of three-magnon splitting to A Hy, of the 7 /2 magnons calcu-
lated [378] in high-temperature and high-frequency approximations at fixed Ho
and varying frequency is shown in Figure 11.3. However, in parallel-pumping
experiments usually w; = const and Hy is varied. Then, as one can see from
Figure 11.2, the splitting process also begins at some k; value but, contrary to
Figure 11.3, exists only in very narrow k; and, hence, Hy ranges.

11.2.2 Three-magnon confluence

The kinetic equation (11.1) for the three-magnon confluence process takes the
form

dTL]

2w
E = TZZ [—|(n| —Lny,—1,ny+1 |'H3d|n|,n2,n3)|2
2 3

+ [{ni+1L,na+1,n3 -1 |H3d|n1,7l2,n3)|2]
X (5(’%}1 + hwy — hws). (11.18)
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The factor 1/2 before the sum is absent here because the states |n;, nz,n3) and
[n1, n3, ny) are notequivalent. Writing the matrix elements in (11.18) analogously
to (11.4) and (11.5), replacing n, and n3 by their equilibrium values, and passing,
as in the case of splitting, to the integration in the k,-space, we obtain

1% ™ 2n )
(We1)3e = m/}n /ezzo/m:ol‘%'lzl (Ry — 7a)

X6 (Wi + wy — w3) k3 sin B2dk,dBrd s (11.19)

Here, the limits of integration over k, are determined by the conservation laws,
and ¥3 1, has the form analogous to (11.8).

The energy and momentum conservation laws can be satisfied for the confluence
process only if k; is larger than a certain quantity k) nin. For small k; the values
of k; and k3 must be very large, but they are limited by the dimensions of the first
Brillouin zone (Section 7.4). Such reasoning leads to the relation

wia
Kl min = £ ——

o (11.20)

where a is a lattice constant, 7 is the nonuniform exchange constant (Section 7.1),
and ¢ is a coefficient of the order of unity, which depends on crystal structure and
k direction. Regarding YIG as a ferromagnet with the lattice constant equal to
the mean distance between Fe?* ions, we get with (11.20) at f; = 4.5 GHz that
k1 min ~ 10*. In other crystals and at higher frequencies the k; 1, values can be
much larger [157].

The high-temperature approximation is poorly applicable to the confluence
process because w; can be, and ws is always, larger than w;. Nevertheless, the
contribution of this process to the dissipation parameter of /2 magnons was
calculated in such an approximation [378]. With some assumption valid for YIG
it was obtained at small (but, of course, larger than k; ;) k; values:

2(wr1)se  myMokTk,

(AHg)se = ~ = " 2Dw, (11.21)

where D = 7n/v. An estimate using this formula gives (AHj )3 = 0.2 Oe for
YIG at room temperature, f; = 4.5 GHz, and k; = 10°. The k; dependence of
(AHy)sc atw; = const is shown in Figure 11.3.

The linear temperature dependence in (11.21) is characteristic of all three-
magnon processes in high-temperature approximation. In another limiting case, at
low temperatures the temperature dependence of (w; )3 is exponential, whereas
(wr1)3c does not depend on temperature in this case. The difference is easily
understood: for the confluence process, as distinct from the splitting, thermal
magnons (w;, ky) are needed.

All three-magnon processes result in the change of the entire magnon number,
and therefore, according to (7.72), can take part in the relaxation of M. According
to (7.75), the length of the vector M is also changed by three-magnon processes.
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Hence, the use of the equations of motion (1.66) and (1.67) with dissipative terms
that conserve | M| is, strictly speaking, not allowed when three-magnon processes
are present. But in the case of small amplitudes and small dissipation all forms
of the dissipative term are approximately equivalent (Section 1.4). Therefore,
equations (1.66) and (1.67) are commonly used even in the presence of three-
magnon processes.

11.2.3 Four-magnon scattering

The kinetic equation (11.6) for the four-magnon scattering takes the form

n1 27r1
rTi ZZE|‘I’1234+‘I’1241+‘1’21 34+ ¥y 43|

x[(ny + 1)(n2 + Dnang — nina(ns + 1)(ng + 1)]
x & (hwy + hwy — hws — fuws) (11.22)

The factor 1/2 before the sum is inserted because the identical states |n1, 2, N3,
n4) and |n, na, ng, n3) enter twice in summation. Replacing n, n3, and n4 by
their equilibrium values, we make sure that in this case the kinetic equation also
acquires the form (11.7), and

(e = g5 2 D2 DO (s + 0 1) =
xAky + ky — k3 — k4)d(w1 +wy — w3 — wy) (11.23)

where U = W335 + Wiz43 + Y2134 + U21,43.

The existence of the delta symbol in (11.23) allows one to exclude the summa-
tion over one of the wave vectors, e.g., over k4. Passing then to the integration
over k; and k3 spaces, we obtain
(w,1)4sc = ———/ / [nz(n3+n4+l)—n3n4]|\lf| 5(&)1 +wy—w3— w4)dk2dk3

(11.24)

In the high-temperature approximation (11.13) the ‘statistical’ factor in (1 1.24)

takes the form

(KT)%wy

-7 11.25
h2w2w3w4 ( )

nz(ng + ng4 + 1) —n3Ng =
and the dissipation parameter turns out to be proportional to T2. But, as in the
case of three-magnon confluence, the condition iw; < «T is not sufficient for
this approximation to be valid.
For long-wavelength magnons, according to [199] (see also [214]),

2D(vh)?

o’ =
o A%

ki1ky cos @12 (11.26)
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FIGURE 114
Factor F in (11.28), calculated in [20] according to [436].

where |3 is the angle between k; and k;. After substituting (11.26) into (11.24)
the factor k12 can be taken out of the integral. The k dependence of (wr1)ase is
determined not only by the factor k2. However, it leads to a fast increase of
(wr1)asc with growing k.

The contribution of the four-magnon exchange scattering to the spin-wave
relaxation was first calculated by Dyson [104]. Without regard for the dipole—
dipole interaction and external magnetic field Hy Dyson obtained that at very
low temperatures (kT < fw1) this contribution is proportional to k}T%/2. For
higher temperatures (Aw; < kT < sTc where Tc is the Courie temperature)
Kashtsheev and Krivoglaz [210] found, also without account for Hjy and dipole-
dipole interaction, that

2 2hw;
EkT

(wr1)ase = Aw k3T In (11.27)
where A is a constant and £ is a factor of the order of unity. Vaks, Lafkin, and
Pikin [415] and Wang [436], taking into account the external field Hy, obtained
for the same temperature range an expression that can be written in the form

2
1 wy (kT
= —_—— | — F 11.
(AHk)asc 487 2 (M()D (11.28)
where F' depends on wy, k1, and T'. This dependence is shown in Figure 11.4.

The considered four-magnon process plays an important role in the relaxation
of secondary magnons (with k, and ks for three-magnon splitting, ks for three-
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magnon confluence, k3 and k4 for four-magnon scattering), as well as for magnons
of next ‘generations’. We shall see below that the contribution of four-magnon
scattering can also be essential on the first stage of relaxation.

11.2.4 Inherent processes for uniform precession

Of all the above-considered relaxation processes, only the three-magnon splitting
at sufficiently low frequencies (w < 2wps/3 for 7/2 magnons) makes a contri-
bution to the dissipation parameter not vanishing with k; — 0. At the same
time, it follows from numerous experimental data that the uniform-resonance
linewidth A Hy and the spin-wave dissipation parameter extrapolated to k; — 0
(AHj; — 0) cannot be caused only by defects (Section 11.3). There should exist
some inherent relaxation processes whose contributions to AHp and AH, — 0,
at all frequencies, are finite. The first attempt to solve this problem was made
by Kasuya and Le Craw [212]. They pointed out that energy and momentum
conservation laws can be satisfied by the three-magnon confluence process even
for k; = 0, but under the condition that magnons with k; and k3 belong to the
higher (exchange) spin-wave branches of a ferrimagnet (Section 3.3). Kolokolov,
L'vov, and Cherepanov [231] showed that such a process can yield a material part
of observed AHy and AH; — 0 values in the ferrimagnet YIG.

It should be noted that another three-particle confluence process exists, which
gives the contribution to magnon relaxation not vanishing with k; — 0. This is the
confluence of a magnon with a phonon of the upper (optical) branch. It belongs
to the spin-lattice relaxation processes and will be discussed in Section 12.5.

Four-magnon confluence and splitting processes caused by the dipole—dipole
interaction can also take part in relaxation of magnons with k£ = 0 [14]. However,
their contributions are usually much less than the contributions of all above-
mentioned processes.

11.2.5 Experimental data

In most experimental investigations aimed at the study of inherent relaxation
processes in magnetically ordered substances YIG single crystals were used. The
comparison of the results of these experiments with theory is complicated by the
fact that YIG is a ferrimagnet, whereas the majority of theories, in particular, all
mentioned above except [212, 231], use the ferromagnetic model.

Let us discuss first the uniform-resonance linewidth A Hy. Its minimal values
for YIG are 0.2-0.3 Oe. The contribution of inherent processes to these values is
hardly larger than ~ 0.1 Oe. It should increase when, with decreasing frequency,
the splitting process is ‘turned on’. But in experiments on uniform resonance such
an increase has not been observed because in spheres, used in such experiments,
the ‘turning on’ of splitting is masked by the partial ‘turning out’ of the two-
magnon relaxation processes (Section 11.3) at the same point wp = 2wy /3. If
such coincidence does not take place, the contribution of three-magnon splitting
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FIGURE 11.5

Frequency dependences of the dissipation parameter for surface magnetostatic wave (Sec-
tion 6.2) in a tangentially magnetized YIG film [168]. Points represent experimental data;
dashed lines denote calculated three-magnon-splitting contributions; k; is the wave number
of the magnetostatic wave.

can be observed. An example is given in Figure 11.5, where the frequency
dependences of the surface-magnetostatic-wave dissipation parameter are plotted.
The low-frequency maxima in these dependences results from the three-magnon
splitting [168]. Contributions of this process were also observed in the frequency
dependences of AH;, — 0, found from the measurements of threshold fields for
spin-wave parametric excitation under parallel pumping (e.g., [376]).

For spin waves with k > 0 excited parametrically, all the above-considered
processes, 3s, 3c, and 4sc should give observable contributions. To compare them
with the predictions of theory it is necessary, first of all, to separate the contribu-
tions of different processes to the entire linewidth A Hy, obtained experimentally.
This has been performed in [20], for an YIG single crystal, with the assumption
that the contribution of processes which work at k — 0, does not depend on k and,
therefore, A H, — A Hy._, is the entire contribution of 3s-, 3c-, and 4sc-processes.
The contributions of three- and four-magnon processes were separated using their
different theoretical temperature dependences. The result of such separation is
shown in Figure 11.6, together with the theoretical results. The contribution of
4sc-process was calculated with formula (11.28). The 3s- and 3c-contributions
were found according to [378]. It should be emphasized that the temperature-
dependent experimental values of My and D were used in all these calculations.

One can see from Figure 11.6 that for YIG the contribution of four-magnon
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FIGURE 11.6

Contributions of different relaxation processes to the dissipation parameter of spin waves
with 6 = /2 in a YIG sphere [20]. Pumping frequency 35.5 GHz, room temperature.
Points represent experimental data obtained by paralle! pumping method (Section 10.3).
Solid lines denote the results of separation of different contributions, their calculated values
are denoted by dashed lines.

exchange scattering dominates at sufficiently high temperatures and large k values.
The contribution of three-magnon processes increases sharply at k value that is
in a good agreement with the theoretical value (1 1.17) for the onset of the three-
magnon dipole splitting in the second region of its existence (Figure 11.2), the first
region being absent in this case. It follows from Figure 11.6 that there is a rather
good agreement between the experimental contributions of three- and four-magnon
processes and theoretical results obtained without any fitting of coefficients. It
testifies that the assumptions made in deriving the formulae which were used in
the calculations hold for YIG in the conditions of this experiment.

The situation becomes different for some other crystals with small AH, in
particular, CdCr,Se4 and EuO. They are ferromagnets, and the above-considered
theory of relaxation processes, based on the Heisenberg model of a ferromagnet,
should be applicable better to these crystals than to the ferrimagnet YIG. However,
their parameters (Table 11.2) differ greatly from the YIG parameters, and the
assumptions good for YIG are poorly applicable to these ferromagnets. Therefore,
the formulae, e.g., (11.28), which give good agreement with experiment in the
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TABLE 11.2
Parameters of some ferro- and ferrimagnets with small A Hy.
AnMo (atd42K) T D AHj_
Substance  (G) (K)  (Oecm?) (Oe)
Y;FesO2 2470 560  5.17x107° 0.2 (at 36 GHz)
CdCr,Ses 4450 130 33x107" 0.6 (at9 GHz)
EuO 24000 69.5 1.0x107'"  0.75 (at 36 GHz)

case of YIG, can be used now only for qualitative estimates. It follows from
such estimates that the contributions of three-magnon dipole processes will be
much larger for these crystals than for YIG (10* times in the case of EuO) and
can be observed even at liquid-helium temperature [21, 157]. The contribution of
four-magnon process will increase to a smaller extent (25 times for EuQ) and will
be negligible, at low temperatures, in comparison with the contribution of three-
magnon processes. The numerical calculations [157] carried out for EuO with the
use of formulae (11.14) and (11.19) confirmed the above-stated considerations.

11.3 Two-magnon processes

It became clear in the late 1950s that large values and ‘anomalous’ (with low-
temperature maxima) temperature dependences of the linewidth in many mag-
netic materials are caused by two noninherent relaxation processes (Figure 11.1):
(i) spin-spin relaxation due to nonuniformities, (i) indirect spin—lattice (and in
some cases also spin-spin) relaxation via ions with strong spin—orbital coupling
or via charge carriers.

The first of these relaxation channels is considered in this section.’

The following nonuniformities are the most important.

1. Heterogeneity of composition (chemical nonuniformities), in particular, disor-
der in distribution of ions over the lattice sites.

2. Variation of the directions of crystal axes in polycrystals or non-perfect single
crystals.

3. Nonuniform stresses, in particular, caused by dislocations.

4. ‘Geometrical’ nonuniformities: pores, surface roughness.

The effect of nonuniformities on magnetic resonance can be described, in prin-
ciple, in the independent-region approximation (used already in Section 2.4). In
this approximation, the broadening and shift of resonance curves in a nonuniform

5The second will be studied in Chapter 13.
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medium is not a result of some new relaxation mechanism but is simply due
to the difference of resonance conditions in different regions of the sample (the
oscillations in these regions are assumed to be independent). This approxima-
tion is usually appropriate for paramagnetic and antiferromagnetic (Section 3.2)
resonances. But it is not applicable, as a rule, to ferromagnetic resonance. The
dipole-dipole interaction (for large nonuniformities) or exchange interaction (if
the nonuniformities are sufficiently small) leads to such strong coupling of the
oscillations at different points that they cannot be regarded as independent even
in the zero approximation. It should be spoken of different types of oscillations
(eigenmodes) of the entire nonuniform sample. These modes form, practically,
continuous groups near every mode of a uniform sample. The ac field excites
the entire group, and so, the resonance curve is broadened and shifted. As in
the independent-region approximation, this broadening is not a result of a new
relaxation mechanism. However, as distinct from that approximation, now the
broadening is due to the difference in resonance conditions of different modes of
the entire sample.

The resonance in nonuniform samples was treated above in terms of normal
modes. But the problem can also be attacked in terms of coupled modes. As
such modes, the eigenmodes of a uniform sample are to be used. They are
independent, uncoupled in the absence of nonuniformities, but become coupled if
the nonuniformities are present. The coupling leads to the energy transfer from the
initial mode (excited by the external field) to the modes coupled with it. In such
treatment the nonuniformities give rise to a new relaxation mechanism. Thus, the
distinction between dissipative and nondissipative resonance-line broadening is
relative in the case of such strongly coupled systems as ferromagnets.

In the classical theory, the coupled-mode approach reduces to solving the cou-
pled classical equations of motion (Section 11.1). In the quantum theory, the
equations of motion must be quantum-mechanical (e.g., [336]), and the quantum-
mechanical method of transition probabilities can be also used. It has already been
mentioned that the probabilities are higher the smaller the number of quasiparticles
that take part in the process. The two-magnon processes are forbidden in an ideal
crystal by the momentum-conservationlaw. In a crystal with nonuniformities they
are allowed and their probabilities can be large. Such processes can be referred
to as the scattering of magnons by nonuniformitics. When the initial mode is the
uniform precession, these processes are usually called 0—k processes.

11.3.1 Theory of two-magnon processes

Consider the relaxation of magnons with wave vector k; caused by nonuniformi-
ties. Using the transition-probability method, assume that the perturbation energy
can be regarded as the Zeeman energy of spins S in an effective field H(ry).
Suppose, for simplicity, that this field is directed along the z-axis, which coin-
cides with the direction of constant magnetization My. Then the perturbation



11.3  Two-magnon processes 301

Hamiltonian can be written, according to (7.86), as

N
My =7hY  SiHe(ry) (11.29)
f=1
where N is the number of spins in the sample. Let us pass now, according to
(7.91), to the operators d}L and @y and then, using (7.105), to the operators dk+ and
dx. Expand, at the same time, the field Hei(ry) in the Fourier harmonics. Then,
the bilinear part of the Hamiltonian (11.29) takes the form

N
R 1 1
H =h§———§ex ikr d—gex —ikyrat
p2 Y le\/ﬁ - p( 1f) 1\/N . p( 2 f)a2

1
X —— exp(ik,r ) H, 11.30
P
where
1 &N
H, = — Hy(ry)exp(—ik,r /) (11.31)
\/N; p\"f p"f

is the amplitude of the kpth harmonic of the field H.; and the sums in (11.30),
except the first one, are over all allowed wave vectors in the first Brillouin zone.

As the perturbation is already taken into account by the effective field H, we
can now regard the crystal as ideal, for which the expressions (7.103) hold. Then,
the Hamiltonian (11.30) takes the form

N h o
Hyp = \;__ZZZHka;aIA(kz—k, + ky). (11.32)
N ki ks Ky

The matrix elements of 7:lp 2 that appear in the kinetic equation (11.6) for direct
transitions should be written as [84]

(ny = 1,ny + 1[Hpalny,n2) = /n(ny + NPy, (11.33)

where

vh _ ~h
U, = ﬁ;kaA(kz—k] +ky) = ﬁH(’“'*’”)' (11.34)

For reverse transitions, the displacement 1 & 2 must be made,
The kinetic equation now has the form

dn] 2w 2
— = 7 2 Y12l (n2 — ny)é(hw — hw,). (11.35)
dt h
k2
We assume, as usual, ny, = 7, and take into account that iy = 7, because

magnons with k| and k; are degenerate. Then, according to (11.7), the relaxation
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frequency is

™
w1 = ﬁ’z‘z @) 226wt — wa). (11.36)
k2

Itis seen from (11.35) that the energy is conserved in each elementary two-magnon
process. But the momentum conservation does not take place, the momentum
Ii(ka — ki) is transferred to the crystal as a whole.
Passing, as in (11.2), from the summation over k2 values to integration over k;
space and taking into account (11.34), we obtain
_ 2(4.),1 Y \%4

AHk:—‘—
g

- (2m)? N /k H(kl—k2)5 (wr —w2) k% sin f,dk,df,dp,. (11.37)
2

Consider first the case in which the harmonics H}, of the effective field do not
depend on k, i.e., the nonuniformities are chaotic. Then it can be shown, using
(7.103), that

N
1
H} = 5 >~ He(ry) = H. (11.38)
f=1

H, is the root-mean-square effective field of nonuniformities. Assuming the spin-
wave spectrum to be independent of ¢ and getting rid of the integration over kg,
we obtain (omitting the subscript at 87)

omx
AH, = LdH? / (?ﬂ> k% sin 6d6. (11.39)
™ 0 ak k= ka(8)
Here, a = ¥/V/N is the mean distance between neighboring spins, k4(6) is found
from the condition of degeneration w(kq, ) = wi, and Omax is either equal to 7/2
or is determined by the condition wi(k = 0, fmax) = w [Figure 11.7(a),(b)].
Consider, e.g., the relaxation of the uniform mode in an ellipsoid of revolution
(k1 = 0,w; = wy + N1 vMo) and take, for simplicity, the approximate spin-wave
dispersion relation (7.14). Then the calculation with (11.39) leads to

AHy = (27)"*116*My/*D™*/* H} = Hytex (11.40)

where I; is a factor of the order 1, depending on N ; for a sphere I; = 0.217.
The obtained linewidth can be regarded as a result of broadening the resonance
line (on the order of Hp) by the nonuniformities and ‘further’ narrowing it by the
exchange interaction. The coefficient of exchange narrowing £ex in (11.40) is, on
the order of magnitude,

o H [ir0y
ex HA HA
where H) is the ‘molecular’ field related to D and a by (7.119). For YIG, Eex 1S

of the order of 10~*. Thus, very high effective fields, of the order of 10° Oe, are
needed to get an appreciable contribution (~ 1 Oe) to the linewidth.

(11.41)



11.3 Two-magnon processes 303

, 0=n/2 /92:0 @2 0=m/ Bmax
(]} / 92 =0
(V] /
._/ __/
(a) (b)
ky ky ky ky
0,
0y 9=m72 Wy a 40
/ / 6,0 0=m
0% 8,=0
Wg
] © u @
ky ky k¢ Kmax ky
FIGURE 11.7

Routes of integration (shown by thick lines) in calculating the contributions of the two-
magnon process to A Hy, for (a), (b) chaotic nonuniformities and (c), (d) large-scale nonuni-
formities; in the latter case, k; = 0.

Another limiting case is that of large-scale nonuniformities [Fig-
ure 11.7(c),(d)]. The amplitudes of harmonics H; now have noticeable values
only in a small k-range. Assume, e.g., that

Hk:{ Hyp lfk<kl..=.l/£ (11.42)

0 ifk > ]Cz
where [ is a characteristic dimension of the nonuniformities. It can be shown that
2 2 P 2

Examining again the relaxation of the uniform mode in an ellipsoid of revolution,
we substitute (11.42) into (11.37) and get rid of integration over #,. Then, using
the spin-wave spectrum (7.14), we obtain

3l3H2 ki kz
AHy=>—F dk 11.
0 /0 cos 84(k) (11.44)

where the angle 64(k) of degenerate spin waves is determined by the condition
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FIGURE 11.8

Factors accounting for the density of degenerate states in the scattering of uniform-
precession magnons by large-scale nonuniformities [33%]. Solid line denotes I in (11.47);
dashed line corresponds to the result obtained with the exchange term in the spin-wave
dispersion law taken into account.

wi(k,wq) = wo, which yields

[N, Dit
= = _— 11.45
cos fa ar | omil (11.45)

If k; < kmax [Figure 11.7(d)], the second term under the root in (11.45) can be
neglected. Then,

2

~__ P =pf
Mo oV N.T@m pa

where &g is the coefficient of dipole narrowing, which was already introduced
in Section 2.4. In this case (of large-scale nonuniformities), much smaller H,
values are needed to obtain an appreciable contribution to the linewidth than in the
previous case of chaotic nonuniformities. For example, H,, should be ~ 10 Oe to
obtain AHg = 1 Oe in YIG.

Two assumptions have been made in deriving (11.46): the replacement of
the spin-wave spectrum by the approximate expression (7.14) and the neglect of
exchange contribution to this spectrum. Without the first assumption, Schlémann
obtained for a sphere [338]

(11.46)

V3
2My

The dependence I>(wg/wps) is shown in Figure 11.8. The factor I, tends to
infinity at a point wy = 2wy /3 where the frequency of the considered mode
approaches the upper boundary of the nonexchange spin-wave spectrum. At this
point the density of states (in nonexchange approximation) tends to infinity, and
it is the reason of AH — oco. It should be emphasized that the singularity of

AHy = Hglz(w()/.uM). (11.47)
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the density of states, and hence of AH, is removed by taking into account the
exchange contribution to the spin-wave spectrum [338] (Figure 11.8). It is also
removed if the spin-wave dissipation or the influence of nonuniformities on the
spin-wave spectrum is taken into consideration [349].

11.3.2 Disorder in distribution of ions over lattice sites

Passing now to the study of the influence of specific nonuniformities, we begin with
the disorder in distribution of atoms (or ions) over the lattice sites. This problem
was solved by Clogston, Suhl, Walker, and Anderson [76] using the method of
coupled equations of motion. The same results can be obtained, as Callen [66]
has shown, by the transition probability method. The results can be represented
in the form of (11.40), but as the exact spin-wave dispersion relation was used,
the factor I in (11.40) turned out to be dependent on the ratio H.o/ (47 My).

The disorder in the distribution of ions takes place in ferrites with the inverse
spinel structure (Section 3.3), e.g., in Ni and Mn ferrites. By the time when the
work [76] was performed, the minimal AH values in single crystals of these
ferrities were ~ 40 Oe. An assumption has been made in [76] that the nonuni-
formity is the variation of the pseudodipole interaction (Section 2.2). If the entire
magnetocrystalline anisotropy of Ni ferrite would be caused by this interaction, its
effective field (and the root-mean-square variation in the case of chaotic nonuni-
formities) should be of the order of 105 Oe. Such H,, according to (11.40), would
lead to the above-cited AH value.

The results of later works have frustrated this optimistic picture. First, es-
sentially smaller AH values were obtained in ferrite single crystals with spinel
structure, €.g., 1.2 Oe in nickel ferrite [454]. Second, it turned out (Section 2.2)
that the origin of the anisotropy in ferrites is mainly the intraionic (‘one-ion’)
interaction. Callen and Pittelly [67] and Haas and Callen [170] calculated the
linewidth assuming the perturbation to be the variation of the intraionic spin—
orbital interaction in the cases of, respectively, a nondegenerate and degenerate
lowest energy level. The first case takes place for Fe?* and Nit jons at octahedral
spinel sites, and the second takes place for Co?* ions at such sites.

The resuits obtained in [67, 170] can be expressed in the form of (11.40).
In the case of a nondegenerate level [67], the effective field H}, turned out to be
proportional to ¢(1—c)(Ga—Gg)?, where cand 1—c are the relative concentrations
of two sorts of ions distributed disorderly over the octahedral sites, and G and
G are the constants of spin—orbital interaction for these ions. An estimate for
Fe?* as A ions, Fe’* as B ions (G ~ 0), and ¢ = 1/2 results in AH ~ 10 Oe.
This value is much smaller than the experimental A H values in ferrites containing
Fe?* ions even in smaller quantities. The spin—orbital interaction in Ni2*+ ions is
weaker than in Fe?*, so, the experimental data [454] do not contradict the theory.

In the case of a degenerate level (Co®* at octahedral sites), the contribution of
ionic disorder is 20-30 Oe per 1 at. % of Co [170], which is much greater than the
contribution of Fe?*. But in both cases the theoretical values are smaller than the
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experimental linewidths in ferrites containing Co?* or Fet ions, and, in addition,
the experimental angular and temperature dependences differ essentially from the
theoretical. The reason for this is that the scattering of magnons by the ionic
disorder is masked by another, stronger mechanism of ionic relaxation, which will
be discussed in detail in Chapter 13.

Thus, until now (1996), the contribution of the scattering of magnons by the
disorder in distribution of ions over the lattice sites has not been discovered experi-
mentally, although this mechanism was the first 0— k process studied theoretically.

11.3.3 Anisotropy-field variations and pores in polycrystals

The independent-grain model (Section 2.4) is applicable to polycrystals if con-
dition (2.64) holds. This condition is satisfied only for ferrites with very large
anisotropy or near the compensation points. If (2.64) does not hold, the dipole
narrowing takes place, and one can use the theory of magnon scattering by nonuni-
formities. The nonuniformities are now the variations of the directions of crystal
axes, pores, and, in some cases, the inclusions of other phases.

We consider first the variations of the directions of crystal axes (and hence,
of the anisotropy field), which are characteristic of polycrystals, though do not
always make the largest contribution to the linewidth. The mean grain dimensions
in polycrystals are usually of the order of a micrometer or more,® and therefore
ki < kmax (Figure 11.7). So, the second of the above-considered limiting cases
and, in particular, formula (11.46) are usually applicable to polycrystals.

In nontexturated polycrystals, in which all directions of the crystal axes are
equally probabie, the root-mean-square value of the anisotropy field H, must be
substituted into (11.46) for Hy. In a cubic crystal, with allowance only for the
first anisotropy constant, H2 = (16/24)H?%, [338] where Ha; = K1/Mo. The
estimate using (11.46) yields for YIG at room temperature AH, ~ 10 Oe, which
does not contradict the experiment (see below).

Formulae (11.46) and (11.47) can be used to calculate the contributions to AH
of other effective fields, e.g., the fields caused by nonuniform strains arising near
dislocations. The theory for this case was developed by Barjyakhtar, Savchenko,
and Tarasenko [40].

Consider now the contribution to ferromagnetic-resonance linewidth of the
pores between grains in polycrystalline ferrites. The independent-region concept
(Section 2.4) has given, in this case, the A H values that agree with experiment on
the order of magnitude. However, this agreement indicates only that the coefficient
of dipole narrowing (Section 2.4) is of the order of unity.

The contribution of pores was calculated by Sparks, Loudon, and Kittel [378]
using the transition-probability method. The same model of a spherical cavity
as in the independent-region theory was used. The energy of the demagnetizing

6We do not touch on the nanocrystals, which have much smaller grains, though they are regarded
now as a promising magnetic materials.
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Frequency dependences of A H in polycrystalline ferrites [209]. (a) The anisotropy contri-
bution dominates (p < 0.003). (b) The porosity contribution dominates (|H 41| ~ 2 Oe).

field of the cavity was expressed in operators é,‘: and ax, and after calculations
analogous to those performed in deriving (11.46) it was found that

47 Vp G(ﬂdo)
= = PAxr My—29Y/
9 W T 0 Cos G40
where 1}, is the volume of the cavity, 1} is the volume of the sample, 639 =

arccos(N, /4m)'/? is the polar angle of degenerate spin waves [Figure 11.7(d)],
and

(AH), (11.48)

G(B40) = (3cos® 409 — 1)%. (11.49)

Two assumptions [the same as in deriving (11.46)] were made in deriving
(11.48): the approximate spin-wave dispersion relation (7.14) was used, and the
second term in (11.45) was neglected. If the first assumption is not made, a sin-
gularity in the A H(w) dependence arises when the uniform-resonance frequency
wo crosses the upper boundary of the non-exchange spin-wave spectrum. And if
the second assumption is also given up, the singularity will be smoothed, as in the
above-considered case of the anisotropy-field variations. If the sample contains
many pores, V; in (11.48) is the entire volume of all pores; the ratio V,/Vp = p is
called the porosity.

Expression (11.48), as distinct from (2.69), contains factors (cosf40)~"' and
(11.49). The former takes into account the density of degenerate states and is
present in all formulae for large-scale nonuniformities. The latter has appeared
due to the specific, spherical shape of the cavities. Real pores in polycrystals, of
course, are not spheres, and the behavior of AH determined by the factor (11.49)
should not be and has not been observed in experiment.

A lot of works were devoted to the experimental investigation of ferromagnetic
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resonance in polycrystalline ferrites (e.g., [63, 160. 209]). In all of them, beginning
with work by Buffler [63], the A H maximum predicted by the two-magnon theory
has been observed when the frequency of the relaxing mode crosses the upper
boundary of the nonexchange spin-wave spectrum. But at first it was not clear by
which contribution to AH this maximum was determined, by the contribution of
the anisotropy-field variations (A H ),, of pores (AH),, or by both. To separate
the contributions (AH ), and (AH), we may use two methods: to employ their
different temperature dependences, or (that is better) to vary separately anisotropy
and porosity. In the latter case the contribution of each parameter should not
change and must be as small as possible when the other is varied. InFigure 11.9 the
data obtained by this method [209] are shown. When the anisotropy contribution
dominates [Figure 11.9(a)], the observed AH behavior agrees with the theory
of magnon scattering by large-scale nonuniformities. But when the porosity
contribution dominates [Figure 11.9(b)], the experimental dependences do not at
all agree with the above-considered theory: no distinct maximum is observed
at wy = 2wy /3, the AH values to the left of this point are not smaller than
those to the right, and an essential increase of (AH ), is observed with growing
frequency. As for the proportionality of (AH ), to Mp and p (obtained also in the
independent-region theory), it is confirmed by all experiments.

11.3.4 Surface roughness

In high-quality single-crystal ferrite samples the surface roughness is the most
significant factor causing the two-magnon scattering. Le Craw, Spencer, and Por-
ter [251] were the first to ascertain the influence of this factor on the ferromagnetic-
resonance linewidth. This influence is very important. The A H values of carefully
polished YIG spheres are as low as 0.3 Oe, but they grow to ~ 10 Oe if the spheres
are grinded using abrasive powder with 10 gm grain.

The above-mentioned theory [378] was developed just to allow for surface
roughness. The assumption has been made that the surface nonuniformities are
semispherical pits covering the sample surface. The amplitude Yo, should be
halved twice, when passing from internal spheres to surface semispheres, to take
into account the decrease of the scattering-center effectiveness and the decrease
of its volume. The number of semispheres is found from the condition that they
completely cover the surface. Then, instead of (11.48), we obtain

T Rs G (Bd 0)

(AH)S = §E4WMOE()S€(}0

where Ry is the sample radius and Ry is the radius of semispheres. The depen-

dences of (AH)s on My and Ry have clear physical meaning and agree with
experiment (e.g., Figure 11.10).

Formula (11.50) does not give the frequency dependence of (AH )5, whereas
the experimental values of (AH);, as well as of (AH),, increase with growing
frequency. The allowance for exact spin-wave spectrum should lead, according to

(11.50)
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Dependences of AH on the radius Ry of ferrite spheres [452]. Bold lines represent
experimental data at f = 9 GHz and room temperature. Numbers at the curves denote the
mean abrasive-grain dimensions in the final grinding or polishing. The increase of AH at
large Ry is related to excitation of nonuniform modes (Section 6.3).

the two-magnon theory, to maxima at the points where the frequency of the relax-
ing mode crosses the upper boundary of the non-exchange spin-wave spectrum.
However, these maxima have never been observed in single-crystal samples with
rough surface. The reason for this is, probably, the broad spectrum of the space
harmonics of uniformities caused by their highly irregular shape; the degeneration
with the non-exchange part of the spin-wave manifold does not then play a sig-
nificant role. The same may be the reason of the above-mentioned ‘anomalous’
behavior of A H,, in polycrystalls.

The contribution of surface roughness is proportional to the ratio of the area of
sample surface to the volume of the sample. Therefore, this contribution should
be very large in thin films. Only the high quality of the surface of epitaxial YIG
films grown on well polished substrates allows one to obtain rather small AH
values in such films (Section 6.2).

In conclusion, some general remarks should be made concerning the two-
magnon relaxation processes.

These processes play a significant role not only at the first stage but also at
subsequent stages of relaxation, leading to the spreading of energy over the entire
region of the spin-wave manifold degenerate with the initial mode.

The existence of higher (exchange) branches of spin-wave spectrum in ferrimag-
nets does not materially influence the two-magnon processes because the modes
the relaxation of which we are interested in are usually degenerate only with the
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lowest (ferromagnetic) branch. In antiferromagnets the two-magnon processes
play an important role (e.g., [255]). Very narrow antiferromagnetic-resonance
lines were observed [233] just when the degeneration of the relaxing mode with
spin waves did not take place.

Two-magnon processes do not make an additive contribution to the spin-wave
dissipation parameter A H;, found from the measurement of the spin-wave para-
metric excitation threshold. Nevertheless, these processes influence essentially
the parametric excitation of spin waves (Section 10.3). They lead to the increase
of the threshold of first-order parametric processes and to the smoothing of the
second-order-process threshold.

Two-magnon processes, in which the entire number of magnons is conserved,
do not take part, to a first approximation (without allowance for the dipole—dipole
interaction), in the relaxation of M,. However, the 0 — k processes take part in the
relaxation of the vector M length, which is determined, to the same approximation,
by the number of all magnons except the magnons of uniform precession.

The dissipation parameter in magnetically ordered substances increases when
the point of the second-order phase transition (Curie temperature for ferromagnets)
is approached. This increase is sometimes associated with ‘scattering of magnons
by the magnetization fluctuations’, and this process is assigned to the two-magnon
processes. But such treatment cannot be regarded as correct. Fluctuations, in-
cluding critical (which arise near the points of second-order phase transitions), are
characteristic of an ideal crystal. Therefore, their effect on the relaxation should
be treated in terms of inherent processes, which were considered (without taking
fluctuations into account) in Section 11.2.
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Magnetoelastic coupling

12.1 Elastic properties and magnetoelastic interaction

So far the magnetic system of magnetically ordered substances was regarded as
isolated. Now taking into account its coupling with other systems, we discuss, in
the present chapter, the coupling with elastic system, i.e., with the vibrations of
the crystal lattice. First of all, some general concepts of the theory of elasticity
(e.g., [227, 113, 245]) will be briefly recalled.

12.1.1 Elastic waves and oscillations

The elastic state of a solid regarded as a continuum is characterized by the dis-
placement vector

u(r)=r—m7g (12.1)

where 79 and 7 are the position vectors of a point in the initial and the deformed
states, respectively. Under certain conditions [245], which are approximately
satisfied in the cases we are interested in, the deformation can be described by the

symmetric strain tensor!
1 (0u, Ou,
Cpg =75+ —]. 12.2
P2 (3xq oz, (122)

The tensor €pq diagonal components, in the main axes of this tensor, represent the
fractional extensions in the directions of these axes, and their sum is the fractional
change of volume of a small element of the solid.

The force acting on a small volume element is the sum of the elastic force
0fer and the body force 8f,. The former is the net force caused by the action of
all neighboring elements on the considered one. The latter is caused by external

Here and hereafter in this chapter, we use, contrary to the previous chapters, the same notations
(e.8., epq) for the entire tensor and its components.

31
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fields, as gravitational and electromagnetic. In problems we will consider, this
force may be neglected. The elastic force per unit volume can be presented in the
form

3
00 pq
Oz,

Jeip = (12.3)

q=1
where o, is the symmetric stress tensor. The stresses are usually caused by
external forces applied to the surface of the body, and the boundary condition

holds [245]
3
Znosqa,,q =Fyp on S (12.4)
q=1

where F. is the external force per unit area of the surface S and ngs is the unit
outward normal to S. In the case of uniform extension or compression in the
direction of a unit vector ngr,

Opq = £BpBe0 (12.5)

where 3, 4 are the direction cosines of the vector 1o Such uniform deformation
is approximately realized when, e.g., a rod is compressed in the direction of its
axis; o is then equal to the pressure applied to the flat surface of the rod.

The free energy density (or energy, in accordance with the footnote on the
page 31) of an elastically strained solid is

3 3
1
Ua =5 S5 opetra (12.6)

p:] q:l
Taking into account that o, depends on e,4, We can get

aUel
= . 12.7
qu aepq ( )

For small displacements the Hooke law holds:

3 3
Opg =9 ) CpalmCim (12.8)

=1 m=1

where ¢pqim are components of the fourth-rank tensor of elastic stiffness constants
or moduli of elasticity? [227]. It follows from the symmetry of the tensors 0,4 and
epq that the number of independent components ¢ ,qim., in general, is equal to 21.
It decreases for all crystal systems except the triclinic. For the cubic system, there
are three independent COMPONENLS: Cpppps Cppeq» AN Cpgpg (in coordinate system

2The inverse tensor (Cpgim )~ I = Spqim is called the tensor of elastic compliance constants [227].
However, there is no consensus on these terms, components Cpqim are named sometimes ‘elastic
constants’, and components s,q1m, ‘elastic moduli’.
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with axes in (100) directions). The following notations are used: Cpppp = Cl1,
Cppgg = €12, and Cpgpq = c44. For an isotropic medium,

€11 — €12 = 2¢44 (12.9)

so that two independent components are left. It should be noted that (12.9)
is nearly satisfied for some cubic crystals, too. For YIG at room temperature,
€11 = 2.69 x 10'%, ¢ = 1.077 x 10'2, and c44 = 0.764 x 102 [387], so that
2644/(01 1 —C 2) = 0.947.

With allowance for Hooke’s law the elastic energy of a cubic crystal takes the
form

1
Ua = 5S¢t (€22 + €5y +€2.) + 12 (enseyy, + €yy€zz + €:2€z0)
+2¢44 (eiy + eiz + ezz) . (12.10)

The equation of motion for an elastically strained solid, without taking into
account the body forces and dissipation, has the form

’u
PoE = fe (12.11)

where p is the mass density, and f,; is determined by (12.3). Using (12.8)
and (12.2), this equation is transformed into

*u u,,
o atzp =ZZZC”"”“0_%3_@ (12.12)
q I m

In the case of a uniform plane wave [u = ugexp (iwt — igr)], the solution
of (12.12) shows [227, 113] that there are three normal elastic waves with disper-
sion relations

wi=v,q (G=1,2,3). (12.13)

For an isotropic solid and for a cubic crystal in the case when wave vector qis
parallel to the axis (100), one of the normal waves is longitudinal (u || q), with
velocity

vy = /L (12.14)
P

and the other two are transverse (u L q), with

vy =, 24 (12.15)
p

In YIG (p = 5.17) at room temperature, v = 7.209x10° and v, =
3.843x10° [387]. The density of elastic-energy flow (the Umov vector) [113] is

I = pw’u’v) . (12.16)
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Normal waves in waveguides containing elastic media, as well as eigenoscil-
lations of bounded bodies, are found by solving the elastic equations of motion,
e.g., (12.12), subject to boundary conditions. If boundary surface is free, the
boundary condition is

S nogope =0 at S. (12.17)
q

If the surface is fastened, w = 0 at S. It should be noted that waves in elastic
waveguides are neither pure transverse nor pure longitudinal even in the above-
mentioned cases (isotropic solid and cubic crystal with ¢ || (100)) when waves
in unbounded medium are longitudinal or transverse. In systems bounded in the
direction of propagation, e.g., in plates, elastic standing waves take place, similar
to standing spin waves (Section 7.2). Their eigenfrequencies are determined by the
plate thickness and by the character of boundary co nditions. For conditions (2.17),
the eigenfrequencies are w, 1| = nvy | /d where n = 1,2,3....

The calculation of elastic-oscillation eigenfrequencies for bodies bounded in
all directions presents essential difficulties. We will cite only the values of some
of the lowest frequencies for an isotropic sphere with free surface and elastic
parameters of YIG [249]: fr12 = 3.081 X 10°/d Hz, fs12 = 3.259 x 10°/d Hz,
fso1 = 6.067 x 10°/d HZ where d is the sphere diameter in centimeters. The
frequency fri2 corresponds to pure transverse oscillation (relative to the radius),
and the other two correspond to mixed oscillations; figures in the subscripts
indicate the numbers of variations along polar angle and radius.

Quantization of elastic waves and oscillations, similar to the magnetic case
(Section 7.3), yields the quasiparticles (phonons) with energy € = hw and quasi-
impulse p = Kg. A certain kind of phonons corresponds to each elastic normal
wave.

So far we have considered, according to the classical theory of elasticity, an
elastic continuum. In a discrete crystal lattice, analogous to discrete magnetic
lattice (Section 7.4), the following new features appear: (i) the ¢ range is limited
to the first Brillouin zone, (ii) dispersion relations (12.13) are replaced by more
complicated ones, and (iii) the 3(n — 1) new, optical branches appear where n is
the number of atoms in a primitive lattice cell (Figure 12.1).

12.1.2 Magnetoelastic energy and equations of motion

One of the reasons of coupling between magnetic and elastic systems in magnet-
ically ordered substances is the dependence of exchange interaction on distances
between magnetic atoms (or ions). Another reason is the dependence of magnetic
(dipole—dipole) interaction on these distances. The third reason, usually the most
essential, is the spin—orbital interaction. These reasons apart, we may write the
phenomenological expressions for the magnetoelastic energy using [as for mag-
netocrystalline energy (Section 2.2)] only the symmetry considerations. We will
restrict ourselves to the case of a cubic crystal, assume the exchange interaction to
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Elastic-wave spectrum in a continuum (dashed lines) and in a discrete crystal lattice (solid
curves). Only three of 3(n — 1) optical branches are shown.

be isotropic, and direct the coordinate axes along the axes (100). Then, up to the
terms of the first order in e,, and of the second order in M,, the magnetoelastic
energy can be written in the form [340]

B, B,
Una = 375 ) Myey, + 1722 My Maey,
0 5 0

P g#p
Ay oM, OM, Ay OM,\*
Mg;;; 9z, Oz e"“LMgXp:; Bz, ) Cee 1219)

where p, ¢, | = 1, 2, 3. (Terms of the first order in M, cannot be present, as
pointed out in Section 2.2.) The first two terms in (12.18) result from relativistic
(magnetic and spin—orbital) interactions, and the last two terms, from the exchange
interaction. The quantities By, B,, Ay, and A; are called magnetoelastic constants.
For YIG at room temperature, B; = 3.48 x 106 and B, = 6.96 x 105 (387]. In
an isotropic ferromagnet B, = B,.

The magnetoelastic energy U, leads, first of all, to the change in the equilib-
rium elastic state of a magnetically ordered substance, namely, to the appearance
of spontaneous strains egq caused by magnetization. This phenomenon is called
magnetostriction, in a narrow sense (in a wider sense, the term ‘magnetostriction’
is used sometimes to denote all phenomena caused by magnetoelastic coupling).
To find the strains egq, in the case of a ferromagnet magnetized to saturation, we
have to minimize the sum of U, and Unel.

Consider a cubic crystal and neglect the exchange contribution to magnetoelastic
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energy. Then, the magnetostrictive fractional elongations in the directions of the
(100) and (111) axes, due to magnetization in the same directions, are [70]

ol 2 B 6l 1B,
- =Aw=—5—"TT-— - =An=—-z—. 12.19
(l)IOO s e —can (l)m o 3caa (1219

The quantities Ajgo and Ay are the magnetostriction constants of a cubic ferro-
magnet. Their values for YIG at room temperature are: Moo = —1.4 x 1076
and A\j;; = —2.4 x 107% The averaged magnetostrictive constant of a cubic
polycrystal is [70]

2 3
Apoly = g/\loo + g/\m- (12.20)

Substituting the magnetostrictive strains egq into expression (12.18) for the

magnetoelastic energy (taking into account only 1ts first two terms), we find that
the part of this energy dependent on magnetization directions has the form [70]

0 0 2.2 2.0 2.2
Unel = Kimel (0‘1‘12"‘0‘203'*'0301) (12.21)
where ; .3 are the direction cosines of the magnetization, as in (2.32), and

2 2
Bl _5B (12.22)

0
K; —— 5
cr1 —C12 Ca4

mel —
The energy (12.21) and the elastic energy caused by the magnetostrictive strains
should be added to the energy of magnetocrystalline anisotropy. This results in
renormalization of the anisotropy constant, as already pointed out in Section 2.2.
If terms of higher order in M components were taken into account in the mag-
netoelastic energy, the higher anisotropy constants would be renormalized in a
similar manner. It should be noted that the considered renormalization, based on
finding the equilibrium strains, is valid only in the static case or, approximately,
for sufficiently slow changes of magnetization.

In the presence of external mechanical forces, the equilibrium strains can be
found by minimizing the sum Uy + Umel + & where Uy is the energy of elastic
strains caused by external forces. Substituting the equilibrium strains into the
mentioned sum, we can find an expression for the part U® of the total energy
depending on the external mechanical forces. For example, in the case of uniform
compression of a uniformly magnetized sample of cubic crystal [70],

3
Ue = -5 [Aioo (28} + 0385 + alB3)

+ 2A111 (@121 82 + a3 1 B3 + azon f351)) (12.23)
where ¢ is the pressure and ;23 are the direction cosines of compression axis
(relative to the (100) directions).

To study the dynamic processes under the action of magnetic and mechanical

forces varying quickly in time we must use the equations of motion. If the
magnetoelastic coupling is to be taken into account, these equations should be the
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coupled equations for magnetization M and elastic displacement u. To obtain
them we must insert the effective field of magnetoelastic interaction Hy, el into the
Landau-Lifshitz equation and insert the force fme; caused by this interaction into
the mechanical equation of motion (12.11). The effective field H,¢ can be found
from the magnetoelastic energy, e.g, (12.18) using the general formula (2.7).
To find the force frer an expression similar to (12.3) is to be used where the
magnetoelastic stresses omel pq are obtained from magnetoelastic energy by the
formula found from (12.7) with the replacement Uy — Uppe;.

Let us consider, as before, a cubic crystal magnetized along the (100) axis
and, restricting to not-too-fast variations of M in space, retain in (12.18) only
the first two, relativistic, terms. Suppose, for simplicity, that the condition of
elastic isotropy (12.9) is satisfied, and assume the exchange interaction to be also
isotropic. Then, without allowance for dissipation, we get the coupled equations
of motion [249]:

aMI = —’Y__ (auy au‘1> Ma: - ’Y[Hefz - sz
Oy

a oz
2k (%—1;1’ - )] M, +~vHey M. - vB, (%"2 + %’)
B (‘?;;y N %1—;—) M, +7[Hefz V2
2§i (ég;z - %t)] M. — yHe: M. + 7B, (?;;z + %)
(12.24)
pB;ZL; = c4aV2uy + (44 + c12) %divu
+%6£§ ]322 [; (M, M) + 3 (MIMZ)]
pa;;‘zy = 44V, + (caq + C12) aydlvu
v+ 2 [ 2 () + 2 (a0
pa;:;z = 4V, + (coa + €12) 2divu
%6;\;13 + 1322 [ (M. M, )+£(M M )]. (12.25)

The effective field H, the components of which appear in (12.24), involves
external magnetic fields, both steady and ac, dipole-dipole (demagnetizing) field
H y, and effective field of anisotropy H,, (Section 2.3). The third projection of
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the Landau-Lifshitz equation is not written because the component M, can be
determined from the condition of M conservation.

12.2 Effect of elastic stresses on ferromagnetic resonance

Consider the uniform oscillations of magnetization in a ferromagnet in the presence
of elastic stresses. Note that uniform ac magnetization does not appear in the
mechanical equations of motion (12.25), just as the uniform displacement u does
not appear in the magnetic equations (12.24). Thus, the elastic vibrations occur
independently of uniform magnetization oscillations. But elastic strains, as it is
evident from (12.24), do affect the uniform magnetic oscillations.

Let us examine first the influence of the static magnetostrictive strains. Consider
an ellipsoid of cubic single-crystal ferromagnet magnetized to saturation along
one of its axes, which coincides with the (100) cubic axis. Having found the
equilibrium magnetostrictive strains and substituting them into (12.24), we make
sure that these strains result in the appearance of an effective field

2B, .
Moy(c11 ~cr2)

acting on ac magnetization. So, the ferromagnetic-resonance frequency, e.g., in
the case of a sphere, is

Hpe = (12.26)

wo =7 (He() + & + }fmd) . (12.27)
Mo

One can see from this expression that at H.o — 0 and K, — 0 (if no domains
would arise) the resonance frequency wo — YHme. That is why the quantity
vH e is called magnetoelastic gap.

The effective field (12.26) differs from the effective field HY,, which corre-
sponds to the additional anisotropy constant (12.22) caused by magnetoelastic
coupling:

K?° 2 B? B? B?
HO  —ofime _ & I~ 22 ) = Hpa— —2—. (12.28
mel M, Mo \c11 —c12  2caa & Mocas ( )

For an isotropic sphere (B; = B, and ¢;1 — ¢12 = 2caa4), ngl = 0, whereas
Hpea # 0. The physical reason of this difference. as Turov and Shavrov pointed
out (e.g., [41)), is the following: in the dynamic case, we consider now, the
magnetization vector is precessing in the ‘frozen’ crystal lattice (deformed by
static stresses), while in the static (or quasistatic) case, discussed in the previous
section, elastic strains had time to follow the magnetization changes.

For YIG at room temperature, ng, = 0.4 Oe and Hye = 0.5 Oe, so that
magnetoelastic ‘corrections’ are close to each other and both are small as com-
pared with the magnetocrystalline-anisotropy field (Ha1 = 2K, /Moy =2 80 Oe
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at room temperature). Therefore, the ‘illegal’ use of static anisotropy constants
in ferromagnetic-resonance calculations or, on the contrary, the use of anisotropy
constants found from resonance measurements (Section 2.3) in calculations of
static processes, do not lead (in this case!) to essential errors.

Examining the influence of external elastic stresses on ferromagnetic resonance,
we restrict our treatment to uniform oscillations in a spheroid of cubic ferromagnet
compressed uniformly in the direction of its axis. It follows from (12.23) that the
effective demagnetization factors of magnetoelastic interaction have the form

30

N;q:_m[

100 = A1) Dpg + A1t BBy (12.29)
where o and 3,4 have the same meaning as in (12.22), Aj00 and A11; are determined
by (12.19), and A,, is the Kronecker delta symbol. The effective demagnetiza-
tion factors N, , being added to demagnetization factors of magnetocrystalline
anisotropy and shape, determine the ferromagnetic-resonance frequency wp.

If My and the pressure (i.e., the vector ngr) are both directed along the same
(100) axis, coinciding with the axis of the spheroid, then, using the method of
effective demagnetization factors (Section 12.1), we get, with regard to (12.29),

wo 2K, 30100

wo _ Ny — N)My+ =1
S eo + (VL ) Mo + Mo+ M,

(12.30)

If My and ngF are parallel to the (111) axis coinciding with the spheroid axis,
then

wo 4K1 30’)\111
“0 - N, —N)My— ==L .
~ co+ (VL ) Mo 3IM, | M,

Formulae (12.30) and (12.31) can be used in the measurement of magnetostriction
constants Ao and Ayjq [372]. If M lies in the {110} plane and the pressure
is applied along the axis {111) perpendicular to this plane, the expression for
the frequency wo will depend on the angle between My and the (100) axis and
contain Ajgo and Ayj;. The both constants can then be measured in one experi-
ment. The effective magnetostriction constant (12.20) can be found from similar
measurement on a polycrystalline sample.

(12.31)

12.3 Magnetoelastic waves

We proceed now to study the nonuniform magnetic and elastic modes, which
are coupled with each other according to equations (12.24) and (12.25). This
coupling manifests itself in that the plane waves cease to be pure magnetic (spin)
and pure elastic waves and become coupled (or mixed) magnetoelastic waves.
Turov and Irkhin [411] were the first to pay attention to this fundamental fact.
Later, magnetoelastic waves were studied by Kittel [222], Akhiezer, Bar’yakhtar,
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and Peletminskii [12] (see also [14]), Vlasov and Ishmukhametov [424], and
Schlémann [340].

12.3.1 Normal waves

We will restrict ourselves to a cubic ferromagnet (regarded as ellastically isotropic)
magnetized to saturation along the (100) axis; equations (12.24) and (12.25) hold
in this case. To get the dispersion law for normal magnetoelastic waves we
must linearize these equations and substitute M, , = mg, 4 exp(iwt — ikr) and
Uz,y,z = U0z,y,- €Xp(iwt — ikr) into them. Then we obtain a system of five
coupled homogeneous linear algebraic equations for complex amplitudes mg
and ugz,y,.> The condition of compatibility of these equations will yield the
dispersion law.

In the case of k || My, the dipole—dipole field Hj; vanishes, as one can see
from (7.12). Neglecting the magnetocrystalline anisotropy, we obtain from the
linearized equations (12.24) and (12.25)

iwmg + v (Ho + Dk?*) my — inkBou, = 0
iwmy — v (Ho + Dkz) my; +inkByu, =0

B
cuzpuac — K*caquq — ik —mez =0
My

B
wzpuy - k2044uy — ik ﬁmy =0 (12.32)

wzpuz — k2¢yqu, = 0. (12.33)

Equation (12.33) is decoupled from the others and describes a pure elastic longi-
tudinal wave with linear dispersion relation and velocity (12.14). The system of
four coupled equations (12.32) describes transverse magnetoelastic waves. After
turning to circular variables my = m, £im, and vy = u; £iu,, system (12.32)
reduces to two independent systems for components with different senses of ro-
tation. The condition of compatibility of equations in each system results in the
equation
W Fwm) (W -wi,)F B2 o, (12.34)
’ pﬂ/f()
Here, wy = v (Ho + Dk?) is the frequency of an unperturbed spin wave, we | =
vk = /caa/pk is the frequency of an unperturbed transverse elastic wave, the
upper and the lower signs relate to the waves with right-hand and left-hand circular
polarization, respectively.
Equation (12.34) has the form characteristic of all coupled waves. In the absence
of coupling (B, = 0), it gives the dispersion curves of the unperturbed waves.

3The subscripts 0 will be omitted hereafter.
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FIGURE 12.2

Dispersion characteristics for normal magnetoelastic waves propagating in a cubic crystal
in the direction of M, which coincides with the (100) axis. Dashed curves correspond to
uncoupled magnetic and transverse elastic waves.

They cross at two values k; and ky of the wave number (Figure 12.2), which
are the roots of the equation wy, = we) 1. The corresponding frequencies w and
ws are called sometimes the frequencies of magnetoelastic (or magnetoacoustic)
resonance. At not-too-large Hy values and, hence, at sufficiently low frequencies
(for YIG, at frequencies lower than ~ 100 GHz),

Vi

ki ~ — ky ~ —. 12.35
1T 2= 5 (12.35)
The last term in (12.34) can be written as £'yMow§1 | where
B
= 12.36
€=l (12.36)

is a dimensionless coupling parameter. Usually { < 1,e.g.,§ = 3.3 X 10~3 for
YIG at room temperature.

The spectrum of magnetoelastic waves with right-hand polarization, which is
obtained by solving equation (12.34) with the upper signs, contains two branches
(Figure 12.2). They can be regarded (in terms of coupled modes) as a result of the
repelling of spin-wave and elastic-wave dispersion curves. The separation éw of
the frequencies of two branches is minimal at the crossing points k; and k. At
the lower point

61 = vy/26Mo (Ho + DA3). (12.37)

So, the minimal fractional separation is of the order of £ 172,
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The spectrum of the left-hand polarized magnetoelastic wave, which is the
solution of (12.34) with lower signs, has one branch (Figure 12.2). It differs only
slightly from the dispersion curve of the transverse elastic wave. Thus, in the
considered case, there are three normal waves: a right-hand circularly polarized
magnetoelastic wave (with spectrum consisting of two branches), a left-hand
circularly polarized magnetoelastic wave, and a longitudinal pure elastic wave.

The m and u components for normal magnetoelastic waves can be found from
the linearized equations (12.32) and (12.33). The longitudinal elastic wave has
only the component u .. For the left-hand polarized wave the magnetic component
m_ is, of course, very small. For the right-hand polarized magnetoelastic wave

(wz — i) pPMo
Bk

my
Uy

(12.38)
W — Wy

_ ‘ ’)’sz

One can see from (12.38) that, far from the crossing points, m 4 is small and u is
large at the segments (‘half-branches’) at which w is close to we; | . On the contrary,
my is large and u4. is small at the half-branches at which w is close to wy,. These
half-branches (and the waves at them) can be named, respectively, quasielastic
and quasimagnetic. The magnetic-energy flow density can be expressed as [348]

1 Hy
In = Eﬁomivmg, (12.39)

where vy, g is the magnetic (spin) wave group velocity. It can be shown, with the
help of (12.39) and (12.16), that I1,; dominates at quasielastic half-branches, I,
dominates at quasimagnetic branches, and these flows are equal at the crossing
points.

The difference in &k values of magnetoelastic waves with different senses of
polarization rotation leads, as in the case of electromagnetic waves (Section 4.2),
to the turn of polarization of an elliptically, in particular, of a linearly polarized
wave, i.e., to the Faraday effect [424, 271].

Consider now the waves propagating in the direction perpendicular to the
steady magnetization. In this case, it follows from the linearized equations (12.24)
and (12.25) that there are also three normal waves: a longitudinal pure elastic wave,
atransverse pure elastic wave withu L M), and a transverse magnetoelastic wave
with u || M. The dispersion equation for the magnetoelastic wave is

2 2 2

(W —w) (W —wiiy) - Z—A‘wakz =0 (12.40)

where now wn = [(wy + Dk?) (wg + Dk? + wy)] 2 is the frequency of a
spin wave with 6 = 7/2. The spectrum determined by (12.40) consists of two
branches nearing each other at the points of crossing of the unperturbed magnetic
and elastic dispersion curves. The minimal separation éw of the branches at the
lower crossing point is of the same order as dw; given by (12.37).
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Far from the crossing points, the half-branches of the spectrum are quasimag-
netic or quasielastic. On the quasimagnetic half-branches, the magnetic com-
ponents m. and m, prevail, and on the quasielastic half-branches, the elastic
component u, prevails. Suppose that, ‘at the input’ of a certain section of a
ferromagnet, there is a transverse magnetoelastic wave with polarization different
from polarizations of the above-considered normal waves, i.e., with u directed at
an arbitrary angle with respect to Mp. Then, the polarization of the propagating
wave will transform, similar to such a transformation of an electromagnetic wave
that propagates perpendicularly to My (Section 4.2).

For arbitrary directions of M (with respect to the cubic axes) and of k (with re-
spect to Mp), the situation is found to be much more complicated. Magnetoelastic-
wave spectra now depend on B, and Bi; independence of B takes place only if
both vectors My and k are directed along the (100) axes. For 6;, not equal to
zero or /2, as well as for 6, equal to zero or /2 but M, not parallel to (100) or
(110), the longitudinal elastic wave is also coupled with magnetic waves.

12.3.2 Damping and excitation

To allow for damping of magnetoelastic waves we have to insert, into equations of
motion or directly into dispersion relations, the parameters that describe dissipation
in magnetic and elastic systems. For example, the replacements wmq — wm + iw!
and we] — we + iwgy can be made. Then, if the losses are small, we get, e.g., in
the case of k || My,

" _ 2wel (W — wm) wéll + (w2 - (“)31) wr'rll

2w (W — wm) + (wW? — wd)

(12.41)

One can see that magnetic and elastic losses are additive in this approximation,
and, near the crossing points, w” = (w}; + w/) /2. Far from the crossing points,
w" =~ wy at the quasimagnetic half-branches, and w” ~ w/ at the quasielastic
half-branches. The wave decrement k& can be found using formula (6.7).

It should be emphasized that this is true only in the case of small losses. For
arbitrary losses, as in the case of pure spin waves (Section 7.1), the complex
dispersion equation must be solved. For stationary waves, w in this equation is
real, and k = k' —ik”. It turns out that branches of the dependence w(k', k”') repel
only if the losses do not exceed certain values. In the opposite case, the branches
intersect. This general property of any coupled waves will also be discussed in
Section 14.2 for coupled spin-electromagnetic waves in metals.

Magnetoelastic waves can be excited either ‘magnetically’, when ac magneti-
zation is directly excited by ac magnetic field, or ‘elastically’, when ac elastic
displacement is directly excited by some mechanic forces. Elastic excitation (as
well as receiving) can be realized, e.g., with the use of a piezoelectric transducer
pasted to the ferrite sample, as in Figure 9.3(b). Magnetic excitation of magne-
toelastic waves always takes place, strictly speaking, when spin waves are to be
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excited, e.g., in films (Sections 6.2 and 7.2). But in most cases, the waves are
excited at quasimagnetic half-branches, far from crossing points, and the elas-
tic displacements can be neglected, as well as the influence of magnetoelastic
coupling on the spectrum.

Another method of magnetic excitation of magnetoelastic waves is the excita-
tion by a uniform ac magnetization, which becomes possible owing to boundary
conditions. Consider, following Le Craw and Comstock [249], a thin ferromag-
netic plate magnetized normally to its surface (in z direction) and put in a uniform
ac magnetic field. The right-hand circular ac magnetization excited by this field is
regarded as given. For oscillations depending only on 2, we can find from (12.24)
and (12.25), neglecting the exchange interaction, the equation

vB3 ) uy

=0. 42
Mo(w —wy)/) 922 0 (1242)

wzpu+ + (644 +
It does not contain m., but this component comes nto play through the boundary
conditions. Assuming the surfaces of the plate to be free, we use the boundary
conditions (12.17). To find the stresses that appear in these conditions we use the
expressions obtained from (12.7) by the substitution Uey — Uej + Umel- Then,
using (2.10) and (2.18), we get the boundary condition

2
(C44 + 1B ) Jus | &m,L =0. (12.43)

My(w —wyg)) 0Oz My

Thus, the problem is reduced to solving a homogeneous (i.e., without a driving
term) equation (12.42) subject to a nonhomogeneous boundary condition (12.43).
Note that in the problem of standing spin waves (Section 7.2) the boundary con-
ditions were homogeneous, but the equation was nonhomogeneous, it contained
the given ac field.

Solution of (12.42) subject to (12.43) shows [249] that u in the plate is a
sum of a uniform displacement and an infinite number of resonance terms, which
correspond to standing magnetoelastic waves. Such a plate can be used as a
transducer for excitation of transverse circularly polarized elastic waves.

12.3.3 Magnetoelastic waves in nonuniform steady magnetic field

So far, studying magnetoelastic waves, we assumed the internal steady magnetic
field to be uniform within the sample. Nonuniformity of this field results in some
new phenomena, one of which is the transformation of quasimagnetic waves into
quasielastic and vice versa. Consider, e.g., a right-hand circularly polarized wave
propagating along M. The spectrum of this wave is plotted in Figure 12.3(a) in
coordinates Hy (k) at w = const. If the field Hy depends on coordinate z in the
direction of propagation, as shown in Figure 12.3(b), the character of the wave
will change with its propagation. Assume that the dependence Hy (2) is smooth
enough, so that the condition (7.60) is satisfied. Then the wave will all the time
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FIGURE 12.3

Magnetoelastic waves in nonuniform steady magnetic field Hy: (a) dependence of Hyon a
coordinate in the direction of propagation, coinciding with the H, direction; (b) dispersion
characteristics Ho(k) at wi = const.

belong to the same branch of the spectrum and, therefore, will transform from
quasimagnetic into quasielastic or vice versa in passing the crossing point.

If, on the contrary, the field gradient is large, so that unequality (7.60) is not
satisfied, then partial excitation of a wave at the other branch will take place near
the crossing. Hence, the complete transformation of the character of the wave,
as it passes the crossing point, will not occur. These qualitative considerations
are confirmed by the theory developed by Schlomann and Joseph [346-348]. It
should be noted that, in these considerations, we have used the ‘language’ of
normal modes. In terms of coupled modes, they would sound in the following
manner: in passing the crossing point, the spin wave transforms partly into the
elastic wave (or vice versa) due to coupling between them; the transformation is
more complete the smaller the Hy gradient and, hence, the larger the length and
the time of interaction.

Nonuniform internal steady magnetic field Hp can be realized, e.g., in a cylin-
drical ferrite rod placed into uniform external field H.o. It was pointed out in
Section 7.2 that ‘turning surfaces’ (where Hy = w/~y) are present in such rod at
appropriate H ¢ values. Near such a surface (z = zg in Figure 12.3), a spin wave
(or, strictly speaking, a quasimagnetic magnetoelastic wave) arises, in a uniform
ac magnetic field, and propagates towards the crossing surface z = z;. Passing
this surface, it transforms into a quasielastic (practically, very near pure elastic)
wave. Similar transformation takes place in the case of k L My, which can be
realized in a normally magnetized ferrite disk (Section 7.2.). Both ‘geometries’
can be used in designing magnetoelastic microwave delay lines. Great attention
was paid in the 1960s to the investigation of such delay lines (e.g., [387]). But
this problem later lost its urgency because of the development of delay lines using
magnetostatic waves in films (Section 6.2).
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12.4 Parametric excitation of magnetoelastic waves

In the present section the effect of magnetoelastic coupling on the parametric-
excitation processes (studied in detail, but without allowance for this coupling,
in Chapter 10) will be considered. Two kinds of problems arise here: (i) the
allowance for the fact that the parametrically excited modes are not pure magnetic
but magnetoelastic, (ii) the investigation of the parametric excitation caused by
magnetoelastic interaction. Let us consider first the former problem.

12.4.1 Longitudinal pumping of magnetoelastic waves

The magnetoelastic coupling should result in the increase of the longitudinal-
pumping threshold. This becomes especially clear if we use the coupled-mode
‘language’: the parametrically excited spin waves excite linearly the elastic waves,
and, therefore, the damping of spin waves and, hence, the threshold increase. It is
evident that the increase becomes essential as the crossing point is approached.

The presence of two magnetoelastic branches allows the conservation laws for
longitudinal pumping to be satisfied in a degenerate, as well as in a nondegenerate,
case [Figure 12.4(a)]. But the threshold in the degenerate case usually is lower.

Suppose now that, at a constant value of the steady field, the pumping frequency
is varied [Figure 12.4(b)]. If w, /2 essentially exceeds the crossing frequency wy,
the waves at quasimagnetic branch are excited, and the threshold is, practically,
the same as without allowance for magnetoelastic coupling. As wp/2 approaches
wi, the threshold increases, and at wp/2 =~ w the threshold point jumps onto
another branch [Figure 12.4(b)] where the threshold is now lower. With further
decrease of wy, the threshold lowers approaching its pure magnetic value. At
wp/2 < wpy the parametric excitation of spin waves, without magnetoelastic
interaction, is impossible. This interaction being taken into account, the waves
on the quasielastic branch can be excited but with very high threshold. The sharp
peak of h,m:, at the point of crossing of pure magnetic and elastic dispersion
curves, was first observed by Turner [408] and then investigated theoretically
by Morgenthaler [290].

We will restrict our treatment to the case for which equations (12.24) and (12.25)
are valid. From these equations, for a wave with components M;, M, and u,
propagating in the z direction, it follows that

oM, 0?
5 = (wy - 'yD@ + vh, coswpt> M,
oM, 8? Ou,
aty = (UJH +wpm — ’)’D@ + 7vh, COSLUpt) M; + 4B, 9z
8u, *u, B, oM,
(12.44)

P = 442 +ﬁo oz
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Parametric excitation of magnetoelastic waves under longitudinal pumping. (a) The spec-
trum of magnetoelastic waves propagating perpendicularly to M), points indicate the
frequencies of unstable-wave pairs: degenerate (1, 1’ and 2, 2') and nondegenerate (3, 3’
and 4, 4'). (b) Movement of the frequencies of a degenerate pair with decreasing pumping
frequency.

To find the threshold value of h, we will not (as distinct from Chapter 10) turn
from M, M, and u, to normal variables. We will directly examine the solutions
of (12.44) which correspond to the parametrically excited waves with frequency
wp/2 and wave vectors xok and —zok. The condition for threshold is that these
waves do not damp in spite of losses.

The solutions, as yet without losses, are

M., =Re [mk <,y EXP (iu—;gt - ikx) + M_g o,y EXp (i%t + ikz)]

%, = Re [uk 2 €Xp (i%t - ikz) + u_k , €Xp (i%t + ikm)] . (12.45)

Substituting (12.45) into (12.44), allowing for losses by replacements wy, =
[(wh + Dk*)(wh +wpr +DE2)]Y2 = wn+iw” and wy = Veas/p — we+ivl,
and equating to zero the determinant of the obtained system of six algebraic
equations, we can obtain an expression for k4, values at both branches of the
magnetoelastic spectrum. The analysis of this expression supports the qualitative
conclusions made above.

Near the crossing point, the mentioned general expression for A, g, reduces
to [290]

(12.46)

wi—wl/4 2
B, & min {i"—'“AHk P ke T
M

wg — wi/4 Qerywy

where Qe = we/ (2w} is the elastic quality factor, AH; = 2wy /7, and ‘min’
means that the lowest value must be chosen from two h, 4, values at different
branches. When these values become equal, the jump of the threshold point
occurs from one branch onto the other. It is easy to make sure that the second term
in the braces in (12.46) is always positive, so that the magnetoelastic coupling
always results in increasing the threshold.
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Dependence of the threshold field, for longitudinal pumping of magnetoelastic waves, on
the internal steady magnetic field Ho. Points represent cxperimental data for a YIG sphere
with My || (100) at 194 K and f, = 23.2 GHz [304]. The inset shows the threshold field
values near the crossing point calculated with formula (12.46).

An experimental dependence of h ¢ on the steady magnetic field atwp = const
is plotted in Figure 12.5. The inset shows this dependence in a small Hy range
calculated with formula (12.46). One can see that the intersection of h,me vs Hy
curves for two branches, and, so, the threshold maximal value occurs at the field
Hpeax somewhat smaller than the field H; at which the unperturbed magnetic and
elastic dispersion curves cross at frequency wp/2. The expression for H; follows
from the conditions wm = wej = wp/2:

Duw?
H,=H,—- —%. 12.47
1 c 41}%— ( )

The parameters of the curve h,w vs Hp (Figure 12.5, inset) can be obtained

from (12.46):
§H e = g—:{i (% + %) (12.48)
RO e
H) — Hyea = 7A25:4Q(;IEA_H}(})§¢ 1+ ":;le (12.50)

Using these expressions, the values of Bj, Qe, and D can be found (however,
with low precision) from experimental curves A i, vs Ho.
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We have considered in some detail the case of My || (100). In other cases,
in particular when My || (111), the longitudinal elastic wave is also coupled, as
pointed out in the previous section, to the magnetic system. Then, fwo magne-
toelastic peaks, transverse and longitudinal, are observed on the curves h, g, vs
Hy.

Magnetoelastic waves are the modes that are actually excited under transverse
pumping, as well. The influence of this circumstance on the threshold values is
essential, of course, only near the crossings of magnetic and elastic spectra. In
both cases, of longitudinal and transverse pumping, the excitation of waves at
the lower quasielastic half-branch [Figure 12.4(b)] is possible at low frequencies
(Wp/2 < wp). Such parametric excitation was observed [405] under transverse
pumping at frequency f, = 1.32 GHz in a hexaferrite single-crystal sphere.

12.4.2 Parametric excitation caused by magnetoelastic coupling

Now the magnetoelastic nonlinearity is the reason of parametric excitation. The
excited waves may also be magnetoelastic. But, if the magnetoelastic coupling
is absent in linear approximation, the excited waves are pure magnetic or pure
elastic. This case is of the most interest, especially when the parametric excitation
caused by pure magnetic nonlinearity is impossible.

As an example, consider parametric excitation, under uniform transverse pump-
ing, of spin and longitudinal elastic waves propagating in the direction of Mj,
which coincides with the (100) axis in a cubic crystal. From equations (12.24)
and (12.25), assuming magnetic and elastic isotropy, we get in the present case
the following system:

2
oM. _ _ (w +7D—6——2B‘ 3“")My

ot 022 MO 0z

aMy 9?2 B; du,
E” (wH +7 922 M, 0z )
2 2

o =% T MEas

Here, M, and M, contain the components of uniform pumping magnetization
and the components of the excited spin wave with the wave vector k = zgk. The
excited elastic wave has (as the pumping is uniform) the wave vector ¢ = —2pk.
Assuming the pumping magnetization to be circularly polarized with right-hand
rotation, we may write

M, = Moag coswpt + Re [nwc z exp (iwt — ikz)]
M, = Moag sinwpt + Re [mky exp (iwt — ikz)}
u. = Re [u_g exp (iwpt + ik2)] . (12.52)
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Substituting (12.52) into (12.51), we obtain a system of equations in Mgz, Miy,
and u* , containing the pumping amplitude ad. Allowing for losses, as usual, by
replacements w; — wy + iYAHy /2 and wy — w; +iwz/(2Qe1), we find from the
condition of compatibility of the equations that

1 CllMoAHk
00 themel = E\/ I (12.53)

The dissipation parameters A Hy, and, especially, 1/Q. decrease with decreasing
k. Therefore, low threshold should be observed at such values of w, and Hp at
which k — 0. However, the plane-wave theory is not applicable for small & values,
and eigenmodes of the sample, magnetic and elastic, are excited. For a sphere,
these are the Walker modes (Section 6.3) and some of the lowest elastic modes
(Section 12.1). The threshold amplitude, in this case, is of the order of (12.53).

If the pumping frequency is high enough, so that the magnetic parametric-
excitation process of the first order at ferromagnetic resonance is forbidden (Sec-
tion 10.2), it is worthwhile to compare the threshold (12.53) with the thresh-
old (10.26) for the second-order magnetic process. An estimate shows that, for
YIG, the ratio a3 ;. me1/@ o can be as small as 0.1, provided that Qe is not
reduced by an external mechanical load. Just under this condition, the consid-
ered magnetoelastic parametric excitation of an elastic mode (named the mag-
netoacoustic resonance, MAR) was observed in a YIG sphere by Spencer and
Le Graw [380].

Spin waves excited parametrically under longitudinal or transverse magnetic
pumping can act as pumping for magnetoelastic parametric excitation [188]. This
effect was named the secondary MAR.

12.4.3 Elastic pumping

The role of pumping in parametrical excitation of magnetoelastic waves can also
be played by an elastic mode. Consider again the case of M || (100). Assume
that the pumping wave is a longitudinal elastic wave that propagates along M (in
z direction), and the excited waves are magnetoelastic waves with wave vectors
k; and k, propagating in zz plane. Suppose that k;» > gp and, hence, ki, ~
k2. = k. Then, equations (12.24) will take the form

oM, s  27B; Ou,
at (“’” ML VA ) M,
aMy _ 2 278] (911,;
5 = (wy + Dk M, 0z M, (12.54)

where u, = up cos(wpt — gpz) is a given quantity.
Comparing (12.54) with the equations of motion for longitudinal magnetic
pumping (Section 10.3), we see that the elastic pumping wave is equivalent to
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magnetic longitudinal field

ZBl 6uz

hoet = —=—— =

25 sin (wpt — gp2) (12.55)
M, 6z Mqup pt — GpZ) . :

As gy is small, we may ignore the wave nature of this field and, regarding the
excited waves as pure magnetic, use formula (10.42). Then, we get

_ UAH;
- 47y By

where || is the longitudinal elastic-wave velocity (12.14). Estimating, with the
use of (12.16), the threshold value of the elastic energy flow, we find for YIG
the value of ~ 0.1 W cm™2, which does not contradict the experiment [272]. For
pumping of spin (strictly speaking, quasimagnetic) waves by transverse elastic
wave, the threshold turns out to be almost the same as in the above-considered
case. The threshold for excitation of elastic and magnetic, or of two elastic, waves
are much higher [258].

Up thr ( 12.56)

12.5 Spin-lattice relaxation

The energy of magnetic oscillations and waves is ultimately transferred, mostly,
to the crystal lattice. This transfer is performed, as pointed out in Section 11.1,
by direct and indirect spin-lattice relaxation processes. Indirect processes will
be studied in Chapters 13 and 14. In the present section we consider the direct
processes, the cause of which is the magnetoelastic interaction.

Because of the noncoherent, statistical nature of spin-lattice relaxation pro-
cesses the quantum-mechanical approach is to be used in the theory of these pro-
cesses. The theory based on the Heisenberg model of ferromagnet (Section 1.1)
was developed by Akhiezer in his famous work [10] repeatedly cited above.

In this theory, the operator 75 of a spin radius-vector (f denotes the lattice
site) is presented, analogously to (12.1), in the form of Ty = 750 + %y, and
the Heisenberg Hamiltonian is expanded in series in terms of the displacement
operator ¢ ¢. Limiting the treatment to the zero- and first-order terms in this series,
we turn from spin operators S 7» as in Section 7.4, to the operators &: and dy,
and from operators i, to the operators b: and b, of creation and annihilation of
phonons. The Hamiltonian, then, takes the form

H =Ho+ Hmerz + Hmers + - .. (12.57)

where H, is the unperturbed Hamiltonian used in Section 7.4 and 11.2 and the
other terms describe the magnetoelastic interaction. They contain operators bq+
and b, in the first power, and the operators d;c" and ay in the increasing powers:
the term 7:(m e12, in the first power, 7:1,,, e13, in the second power, and so on.
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However, the main source of the magnetoelastic coupling, the spin—orbital
interaction, cannot be treated on the basis of the Heisenberg model, which does
not involve orbital moments. Abrahams and Kittel [2] proposed to evolve a
quantum-mechanical theory of magnetoelastic relaxation using phenomenological
expressions, e.g., (12.18), for the magnetoelastic energy. This proposal was
realized by Kaganov and Tsukernik [200].

In this theory the projections of M and u in (12.18) (regarded as operators) are
expressed in terms of the operators d;“, ar and IA);, i)q, respectively. According
to [200] (see also [14]),

L P
w= 2pV zj:zq: w:j]

Here, p is the mass density, V' is the sample volume, pog; (7 = 1, 2, 3) are the
unit vectors of phonon polarization, showing the directions of . for each of three
normal elastic waves with a given wave vector ¢, and w, ; are the frequencies of
these waves.

Consider an isotropic medium, i.e., assume in (12.18) By = B, = B. Then,
using (12.58) and the formulae that express M projections in terms of a, and a;
(Section 7.4), we obtain from (12.18) the Hamiltonian in the form (12.57) where

Fmerz = 39 3 (Trasaby; + He)A(k-q) (12.59)
j kg

[qu exp(—igr) + b} ; exp (iqr)] . (12.58)

ﬂmem = Z Z E Z [(‘I’k, kz,qj&klakzi);, + H.C.) Ak +k;—q)

j ki k2 g
(ko kagsam @55 + H.c.) Ak ks = q)] . (12.60)

Here, H.c. denotes the Hermitian conjugate of the quantity written before it, and A
is the Kronecker symbol (Appendix C); the expressions for the amplitudes ¥ 4 5,
U, kyoq > and Ui, &, o ; are given in [200].

The terms in (12.59) and (12.60), as in the case of the isolated magnetic system
(Section 11.2), correspond to elementary processes of annihilation and creation of
quasiparticles, in the present case, of magnons and phonons. In these processes,
as one can see from (12.59) and (12.60), the impulse conservation takes place.
(Energy is also conserved in each elementary process, in the first approximation
of the perturbation theory, similar to magnon processes treated in Section 11.1.)
The bilinear Hamiltonian (12.59) describes two-particle elementary processes
of magnon—phonon conversion. After the diagonalization of it, together with
the quadratic Hamiltonians of magnetic and elastic systems, a Hamiltonian that
describes the mixed quasiparticles corresponding to magnetoelastic waves would
be obtained.

The Hamiltonian (12.60) describes the three-particle elementary processes,
which are basic to the spin-lattice relaxation. The terms with amplitudes W, &, q j
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correspond to the elementary processes of mo-magnon confluence with creation
of a phonon, and the Hermitian conjugate terms correspond to the splitting of a
phonon into two magnons. The terms with amplitudes ¥y, x,,; correspond to
the elementary processes of splitting a magnon into magnon and phonon. These
processes (as well as the reverse ones, the magnon—phonon confluence) were
named the Cherenkov processes, by analogy with the Cherenkov—Vavilov effect
of light radiation by an electron retarded in a medium (e.g., [246]). The condition
of this effect (the electron velocity must exceed the velocity of light in the medium)
transforms, in our case, into

Umgr > Vel (12.61)

This condition can be satisfied at sufficiently large k values, as one can see, e.g.,
from Figure 12.2.

The process of two-magnon confluence into a phonon can be caused only by
the relativistic interactions, just as the processes in the isolated magnetic system
occuring with the change of the entire number of magnons (Section 11.2). But
the Cherenkov processes, in which the number of magnons remains constant, can
be caused by relativistic, as well as by exchange interactions. The ratio of their
contributions to ¥y, x, . j, at k; ~ k, = k, is [200]

(Virsos) s MoDE?
raas)m B

This ratio, for YIG, is of the order of unity at k& ~ 10°. At smaller k values the
relativistic contribution is dominant, and at larger & values the exchange contribu-
tion dominates. It is worth noting that the direct Cherenkov process (splitting of a
magnon into magnon and phonon) underlies the parametric excitation of magnetic
and elastic waves under magnetic pumping, and the splitting of a phonon into two
magnons is the basis of parametric excitation of magnetic modes under elastic
pumping.

The above-discussed three-particle elementary processes form the basis of the
processes of direct spin-lattice relaxation in magnetically ordered substances
shown in Table 12.1. Note that, as distinct from Section 11.2, now there is no
need in considering four-particle processes. In the case of spin—lattice relaxation,
three-particle processes can be caused by exchange interaction, and, hence, their
probabilities are always larger than the probabilities of four-particle processes.

To obtain the relaxation frequencies of the processes shown in Table 12.1 we
can use the theory based on calculating the transition probabilities in the first
approximation of the nonstationary perturbation theory (Section 11.1). Without
dwelling on these calculations, we cite only some results [100] (see also [14, 171]).
It turns out that the contribution of all these processes to the dissipation of uniform
magnetization oscillations, as well as their contribution to the dissipation of spin
waves with k < 10%, is negligible. This contribution increases with growing k. In
substances in which the indirect spin-lattice processes do not play any important

(12.62)
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TABLE 12.1
Processes of direct spin—lattice relaxation.”

Elementary processes

Process Amplitude direct reverse
ky
q q k,
Magnon confluence Y ko g >kz~/\/\' W\,<k1

k q k
Splitting ¥, 4y 4 Lk ‘
Cherenkov q k,
processes k; k, ky q
Confluence ¥y, 4-(,‘1
q

a Relaxation of magnons with wave vector k| is considered.

role, the direct processes shown in Table 12.1 transfer the energy into the lattice.
This energy was ‘smeared’ out over the magnetic system by spin—spin processes
(Chapter 11) at ‘early stages’ of relaxation.

For uniform ferromagnetic resonance and spin waves with small k, in ‘good’
samples of single-crystal ferrites, as YIG, an essential difficulty arises in explaining
the very first of the mentioned relaxation stages, which mainly determines the
observed AHy and AHj_ values. It was already pointed out in Section 11.2
that Kasuya—Le Graw processes [212] (see also [376]), both magnon-magnon and
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”
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/
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/
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ky kg 4

FIGURE 12.6

Spectra of magnons (solid curves) and phonons (dashed curves). Points indicate the
frequencies for a magnon—-phonon Kasuya-Le Graw process. Note that the condition
ki = k, — g need not be satisfied because the vectors k1, k2, and g, for which the impulse
conservation holds, are, in general, not parallel to each other.
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magnon—phonon, can be important at this stage. A distinctive feature of Kasuya—
Le Graw processes is the participation of magnons or phonons at upper branches
of their spectra. The magnon—phonon Kasuya-Le Graw process is the confluence
of a small-k magnon with phonon at the upper (optical) branch of the elastic-wave
spectrum resulting in creation of a magnon with large & (Figure 12.6). It should be
noted that such a process leads to the energy transfer, not from the spin system into
the lattice but in the opposite direction. However, it results in annihilation of the
considered small-k magnons and, hence, makes a contribution to their dissipation
parameter. Of course, the energy transferred into the spin system by this process
is returned into the lattice by other processes, the probabilities of which are large
enough because of high k£ values of magnons created in the Kasuya-Le Graw
process.

Estimates show that the contribution of the magnon—phonon Kasuya-Le Graw
processes, as well as of the magnon—-magnon ones (Section 11.2), to the linewidth
of high-quality single-crystal ferrites is essential. For YIG, it is of the order of
0.1 Oe, which is a noticeable part, if not a dominant one, of the entire value of
AH) _oin YIG.
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Ionic anisotropy and relaxation

13.1 Anisotropy caused by impurity ions

As mentioned in Section 11.1, the impurity ions with strong spin—orbital coupling
give rise to an effective relaxation process which we, for brevity, refer to as ionic
process. These ions are also a source of anisotropy in ferromagnetic resonance.

Among the considered ions there are all ions with partly filled 3d or 4f shells,
except such that either have no orbital angular momentum (are in the S state) or
have a quenched orbital angular momentum. The latter means that the lowest
energy level of such an ion in the particular crystal is an orbital singlet. The
ions Mn?*, Fe3t, Eu?t, Gd®* are in the S state, and Cr** in the octahedral
environment is an example of ions with quenched orbital angular momentum. It
should be noted that ions with zero or quenched orbital momentum, first of all,
Fe?* ions, are the main magnetic ions in all soft magnetic materials, including
microwave ferrites. Ions with strong spin—orbital coupling emerge either as a
result of the impurities in the starting materials or due to the change of the
main-ion valencies. In some cases the ions with strong spin—orbital coupling are
added purposely, e.g., to increase the threshold of parametric spin-wave excitation
(Chapter 10).

13.1.1 Energy levels of ions

The angular momenta J of ions with partially filled 3d or 4f shells are vector sums
of orbital and spin angular momenta of all electrons of these shells. The interaction
of electrons is such in this case (the Russel-Saunders coupling [336]) that it is
reasonable to first sum the spin angular momenta of all electrons (3~ s, = 5)
and their orbital angular momenta (), I, = L), and only then to sum S and L
(S+L=1J).

It was pointed out in Section 1.1 that the eigenvalues of the operator Sand L
projections onto the axis of quantization are: S,(S —1),...,(=S)and L, (L —
1),...,(=L), where S and L are, respectively, the spin and the orbital quantum
numbers. The eigenvalues of the operator J projections are: J, (J—1),...,(=J),
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and the quantum number J can take the values (S + L), (S+ L—1),...,|S - L|.
The values of S and L in the ground state are determined by the empirical Hund
rules (e.g. [243, 336]).

The energy levels of a free ion, without allowance for spin—orbital and intraionic
spin-spin interactions, depend only on S and L and are (25 + 1)(2L + 1)-
fold degenerate. The mentioned interactions split the levels into (2J + 1)-fold
degenerate multiplets with different J values. The lowest multiplet is that with
J = |§ — LJ if the shell is less than half filled, and with J = S + L if it is more
than half filled. The S, L, and J values of free 3d and 4f ions in the ground states
are given in Tables 13.1 and 13.2.

An external magnetic field splits each multiplet into (2J + 1) equidistant levels
with intervals (1.18). An external electric field removes the degeneration, com-
pletely or partly, depending on the symmetry of the field and the value of J. A
field with orthorhombic or lower symmetry splits the multiplet completely if J is
an integer (i.e., the number of 3d or 4f electrons is even), or splits it into J + 1/2
Kramers doublets if J is a half-integer. Fields with higher symmetries split the
multiplets partly. The cubic field does not split them at all if J < 2. The five-fold
degenerate multiplet with J = 2 is split by the cubic field into a doublet and a
triplet, the seven-fold degenerate multiplet with J = 3 is split into a singlet and
two triplets [1].

Ions in a crystal interact electrostatically with the neighboring ions. The part
of the energy of this interaction that depends on mutual orientations of the ionic
spins is referred to as the exchange energy. It can be described by the use of
the effective exchange (or ‘molecular’) field (Section 1.1), which results in the
splitting of ionic levels similar to the splitting in a magnetic field. The rest of
the interaction with the neighboring ions is described by means of the so-called
crystal field, which has the same symmetry as the local environment of the ion.

Considering the influence of different interactions on the ionic energy levels,
we must begin with the strongest interaction and then pass to weaker and weaker
ones. The sequence of them is different for 3d and 4f ions. For 3d ions, the
influence of the crystal field is the strongest and should be taken into account first.
Then the exchange interaction follows, and only after it the spin—orbital coupling
is to be taken into account. The case of the so-called intermediate crystal field [1]
is usually realized. In this case the energy of interaction between 3d electrons is
higher than their energy in the crystal field, and the energy spectrum is determined
first of all by the values of S and L. The action of the crystal field is stronger
for the 3d ions than the spin—orbital interaction (which leads to the formation
of the total angular momentum J). Therefore, the energy levels of 3d ions are
determined mainly by the action of the crystal field onto the orbital multiplets.

The cubic component of the crystal field is always the greatest. Therefore, it is
reasonable to first find the structure of energy levels in the cubic crystal field, and
then to take into account, as perturbations, the trigonal, tetragonal, and orthorhom-
bic crystal-field components. The splitting of orbital multiplets with L =2 and
L =3 by the cubsic field is shown in Table 13.3. It should be noted that the crystal
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TABLE 13.3
Splitting of orbital multiplets by the cubic crystal field.

Degeneracy after
splitting (in order of
increasing energy)

Orbital Degeneracy Number Environment
angular before of 3d Examples
momentum  splitting electrons of ions octahedral tetrahedral
5 s lor6  Fe** Co’t 32 2;3
4or9 crt Mn*t Fett 2;3 3;2
3 ; 3or8 crt Nitt 1;3;3 3;3;1
2o0r7 cr*t co*t 331 1;3;3

field on octahedral sites of spinels and garnets (Section 3.3) contains a trigonal
component, which results in splitting of the triplet into a singlet and a doublet.

In Figure 13.1, a ‘sequential’ splitting of the orbital multiplet 5D of ions Cr?™,
Mn3*, or Fe*t on an octahedral site is shown. The cubic crystal-field component,
according to Table 13.3, splits the >D multiplet into orbital doublet and triplet. The
trigonal component splits the triplet. The exchange interaction removes the spin
degeneration, i.e., splits each level into five doublets or singlets, according to their

78
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Free ion Cubic Trigonal  Exchange Spln—orbltal el
(without component ~ component — interaction " interaction
spin—orbital ~
interaction) Cristal field

FIGURE 13.1

Splitting of energy levels of d* ions in the octahedral environment. x3, x2, and x 1 denote
the orbital degeneracy.
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FIGURE 13.2

Splitting of the lowest doublet of d* or d® ions on octahedral lattice sites by spin—orbital
interaction without (dashed lines) and with (solid lines) allowance for perturbations.
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FIGURE 13.3

Angular dependence of Tb>* energy levels on one of the nonequivalent dodecahedral YIG
lattice sites, calculated from experimental data on ferromagnetic resonance in Tb-doped
YIG [100]. 6 is the angle between M) and the (100) axis in the {110} plane.

orbital degeneracy. And finally, the weakest, spin—orbital interaction splits the
doublets. This splitting depends essentially on the direction of My with respect
to the crystal axes. It has been shown [182] that the angular dependence of the
lowest levels has the form (Figure 13.2)

1/2
€12 :i(ég)o (1 - % (sin228+sin403in22go)) (13.1)
where 6 and @ are the M angles in the spherical coordinate system with the axis
coinciding with the (100) direction. One can see that there is a crossing of levels
in the (111} direction. It is replaced by a near-crossing if some perturbations are
taken into account (Figure 13.2).

For 4f ions, the spin—orbital interaction is the strongest. It combines S and
L into the total angular momentum J. The multiplets with different J are split
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by the crystal and exchange fields, as the orbital multiplets of 3d ions. For
4f jons with small spin angular momenta, e.g., Yb**, the splitting in crystal
field is much stronger than the exchange splitting. But for 4f ions with large
spin angular momenta, such as Tb*>* or Ho* (Table 13.2), these splittings are
of the same order, which leads to ‘accidental’ crossings of levels at some M,
angles. Different interactions, which have not been taken into account, result in
replacement of the crossings by near-crossings (Figure 13.3).

13.1.2 One-ion theory of ferromagnetic-resonance anisotropy

Let us examine the influence of the ions with strong spin—orbital coupling on the
condition for ferromagnetic resonance (not yet touching on the dynamic contribu-
tion of the ions, which will be considered in the next section).

The free energy of the ions can be found from the general formula [244]

U;:—nTln[ZZNluzexp (—2;)] (13.2)
] v 7

where ! denotes the sort of ions, v denotes the nonequivalent crystal site, and j
is the number of the level. In the case of small concentration of the ions, which
we are interested in, the contributions of different ions on different sites can be
regarded as independent and additive, and we may study them one by one using
formula (2.29). To obtain the condition for resonance we must substitute the
sum of the following terms into (2.24): the ionic free energy (2.29), the Zeeman
energy (2.26), and, in general, the energy of demagnetizing fields. But the last
term may be omitted in the case of a sphere, which we consider for simplicity.
For small concentration of ions, neglecting the intrinsic anisotropy of the main
magnetic system, we may regard @ and ¢ as coinciding with the given angles 0y
and g of the external magnetic field.

Let us take into account only two lowest energy levels. Then, it is easy to obtain
from (2.32) (omitting a constant term)

Ui =Negg— NkTIn coshﬁ- (13.3)
2kT
where €9 = (g1 + £2)/2 and 8¢ = e; — ¢ depend, in general, on the angles 8 and
. Substituting the sum of (13.3) and (2.26) into (2.24) and neglecting the terms
of the second order in NV, we find [163]

w w N , (6€)ge be
He=246H="4 "1 _ 296090 aph 2
res ~ + 6 ~ + 2M0 { (50)09 + 2 tan 2T
(6e)3 se \ 2 1
Yot M aeT) g | T G0

(65)«:4/: e (66)2(p be -2
+ > tanh2nT+ AT coshﬁ . (13.4)
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Here the indices # and ¢ denote, as in (2.26), the partial derivatives with respect
to the corresponding angles.

13.1.3 Near-crossing energy levels

The two-level approximation is good at low temperatures and, without severe
restriction on the temperature, in two important particular cases: (i) low-lying
doublet split by spin—orbital (for 3d ions) or exchange (for 4f ions) interaction,
leading to the near-crossing of levels, as in Figure 13.2, (ii) ‘accidental’ near-
crossing of two lowest levels, as in Figure 13.3.

Consider, first, the case of the lowest orbital doublet split by spin—orbital
interaction. Assume M) to lie in the {110} plane. Then, according to (13.1),
there is a level crossing in the (111) direction replaced, as it has been mentioned,
by near-crossing. To take this into account we may change (13.1):

(6¢)o

glp == 2

1/2
<1 — % (sin” 26 + sin* 6 sin? 2¢) + £2> (13.5)

where £ = (8&)min/(6€)o (Figure 13.2). Then, using the formula (13.4), we
obtain, e.g.,

_N(82)o ., (6¢)min
((SH)”[ = M()f tanh WT

It should be noted that (6 H )1 remains finite in the limiting case of pure crossing:

(13.6)

_ lN(&s)(Z)
£=0" 2 MokT

[(6H)im] (13.7)

Consider now an asymmetrical, ‘accidental’ near-crossing of two levels (Fig-
ure 13.4). Near the point § = 0 the angular dependence of the levels can be
€

P20
(Be)min €

FIGURE 134
Near-crossing of energy levels.
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approximated by the roots of the equation

(¢~ )(e — p2f) — (66 = 0. (13.8)

Suppose (as the calculation is only an estimate) that the terms containing deriva-
tives with respect to ¢ make the same contribution to H as the terms with
derivatives with respect to . Then, using (13.4) and (13.8), we obtain that at the
point of near-crossing

_NG=p) (0

OH = 2Mo(5€)mjn 2kT ’

(13.9)

Giant H, peaks at the points of near-crossings of the impurity-ion energy levels
were explained by Kittel [224]. The expressions for 6 H given in [225] follow
from (13.9) in the limiting cases (6¢)min <K KT and (6€)min > kT'.

13.1.4 Experimental data

The infuence of the ions with strong spin—orbital coupling on ferromagnetic
resonance was first observed by Dillon and Nielsen [98] in the case of impurity
4f jons in YIG single crystals.

The experimental angular dependences of Hy in YIG with small addition of
Tb are shown in Figure 13.5. Two Hies angular maxima, at # = 36° and 8 = 78°,
of the three observed, are caused by the near-crossings shown in Figure 13.3. The
third maximum, at # = 19°, is caused by the ions on another nonequivalent lattice
site.

Let us compare the height of the maxima in Figure 13.5 with the theoretical
value (13.9). The concentration /N can be easily found by taking into account that
the edge of an elementary YIG cubic crystal cell (which contains eight ‘molecules’
Y3FesOy,) is 12.5 A [138] and only 1/3 of the ions occupy the lattice sites that
correspond to Figure 13.3. The magnetization M, may be assumed to be the same
as for pure YIG (195 G at 4.2 K). The values for p; — p, ~ 120x and (6€)min =~ 5«
are found from Figure 13.3. Then, using (13.9), we obtain § H = 250 Oe, whereas
the experimental value (Figure 13.5) is approximately 200 Oe.

The ‘strange’ values of the angles, § = 19°, 38°, and 78°, were explained by
Huber [185]. He showed that all these angles correspond to the same angle 71°
between M and one of the local axes.

Big His peaks in the M, directions in which energy-level near-crossings take
place were also observed [98] in YIG doped with other non-Kramers 4f ions: with
Pr3t, in the directions (100), and with Ho**, in all directions lying in the {100}
planes. The contributions of Kramers ions, Nd**, Sm**, Dy**, Er**, and Yb3*,
were also great, but sharp maxima were not observed, except for Yb**. In the last
case, very sharp ‘anomalous’ Hy. peaks were observed owing to the near-crossings
of levels of Yb** ions that penetrate onto octahedral lattice sites [99].
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FIGURE 13.5
Angular dependences of Hs and AH for Y3_.Tb.FesO, gamet (z = 4 X 1074 at
frequency 8.9 GHz and temperature 4.2 K [156].

The influence of 3d ions with strong spin—orbital coupling on the ferromagnetic-
resonance anisotropy in ferrites was also investigated. For YIG, the ions Fe?t
and Fe** are of the most interest [401, 402]. Fe?* ions arise in small amounts
in the process of crystal growth due to oxygen vacancies and Si** and Pt** ions
penetrating into the lattice. Fe** ions arise as a result of penetration of Pb used
as a solvent in the growth of YIG crystals.

Analogous reasons lead to the appearance of Fe?*, Fe*+, and Mn* ions in
ferrites with spinel structure [236, 297]. Co?* ions arise in these materials
when small amounts of cobalt are added to control the anisotropy or to raise the
threshold of spin-wave parametric excitation (Chapter 10). All the mentioned
3d ions usually have no sharp near-crossings of the energy levels, and their main
effect is the appearance of low-temperature A H maxima to be studied in the next
section.

An interesting example of the influence of ions with strong spin—orbital cou-
pling on ferromagnetic-resonance anisotropy is that of Cr’* and Cr** ions in
the ferromagnet CdCr;Se4 [417]. The anisotropy of this crystal is small because
the main magnetic ions Cr’* have quenched orbital momenta. However, distinct
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Angular dependences of 6H = Hps — w/y and AH for CdCr;Ses (curves 1) and
Cd;_.Ag.CraSes (z = 0.015): as grown (curves 2), after annealing in vacuum (curves 3),
and after subsequent annealing in Se vapor (curves 4) [34]. Measurements were performed
at frequency 9.1 GHz and temperature 4.2 K.

H,.; maxima are observed in (111) directions [Figure 13.6(a), curve 1]. They are
caused by Cr?* ions arising in the course of crystal growth due to Se vacancies.
The lowest energy levels of these ions have been shown in Figure 13.2.

But if CdCr,Sey crystals are grown with small addition of Ag [Figure 13.6(a),
curve 2}, the maxima in (111) directions disappear and maxima in (100) and
(110) directions arise. They are caused by Cr*t ions, which emerge owing to
the substitution of Ag* ions for Cd** ions. The Cr** ions in octahedral cubic
environment have a low-lying orbital triplet (Table 13.3). It is split into a doublet
and a singlet by the trigonal crystal-field component present on octahedral spinel
sites. The singlet and the lowest level of the doublet (split by the spin—orbital
interaction, as in Figure 13.2) are believed to approach each other in (100) and
(110) directions.

The Ag-doped sample was then annealed in vacuum. This resulted in the rise
of Se vacancies and, hence, of the Cr?* ions. Strong H.s maxima caused by
these ions appeared in (111) directions [Figure 13.6(a), curve 3]. The subsequent
annealing of the sample in Se vapor resulted in the disappearance of these maxima
(curve 4) due to the ‘healing’ of Se vacancies. It should be noted that in other
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crystals, e.g., in HgCrySey, the Cr?* and Cr*t ions can coexist, being localized
near the defects that have caused them. The Hie, maxima in (111) and (100)
directions are then observed at the same time [107].

An important assumption has been made in this section (it will be removed
in Section 13.2): the relaxation time of the ionic energy-level populations is
much shorter than the period of oscillations. The anisotropy obtained above with
this assumption does not depend on frequency and coincides with the anisotropy
measured in a constant field, e.g., by the method of torque moments (Section 2.2).
It gives grounds to name such anisotropy the static anisotropy, although it manifests
itself in such a dynamic process as ferromagnetic resonance.

13.2 Ionic relaxation processes

The contribution of the ionic relaxation process to the ferromagnetic-resonance
linewidth of ferrites was observed, as it became clear afterwards, in the early 1950s.
But this process was understood only after Dillon and Neilsen [97] and Spencer,
Le Craw, and Clogston [379] discovered the low-temperature A H maxima in YIG
single crystals with rare-earth impurity ions. To explain these maxima a theory
known as the theory of fast relaxation was developed by Kittel, De Gennes, and
Portis [224, 87]. According to this theory, the AH maxima appear at such tem-
peratures at which the relaxation frequency of ion-level populations 1/7; becomes
equal to ée /i where é¢ is the energy interval between the lowest levels.

It soon became apparent however, that the predictions of the fast-relaxation
theory do not agree, in most cases, with experiment. Besides, the 1 /i values can
hardly be so large at the temperatures of A H maxima, as it is necessary according
to this theory. Dillon [94] and Teale and Tweedale [403] proposed another mech-
anism to determine the behavior of AH in YIG with rare-earth impurities. It was
given the name of slow relaxation. According to this mechanism, the A H maxima
are observed at such temperatures at which 1/7; is equal to the frequency w of the
ac field. It has turned out that the theory developed earlier by Clogston [75] for
the case of interionic electron transitions (Section 14.1) is also the proper theory
for the intraionic slow relaxation.

13.2.1 Transverse relaxation

The fast relaxation falls into the transverse relaxation mechanisms, for which the
excitation of ions is accomplished by means of direct transitions between ionic
energy levels. This excitation is analogous, in some sense, to the paramagnetic
resonance [1, 15], with the difference that it is performed by the magnons of
the main magnetic system, rather than by quanta of an external field. Different
cases of such excitation are shown in Figure 13.7. Case (c) corresponds to the
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(b)

FIGURE 13.7
Transverse ionic relaxation: (a) transition probability is very small, (b) resonance relaxation,
(c) fast relaxation.

fast-relaxation mechanism.

A macroscopic model was first used by Kittel |224] in the theory of fast relax-
ation. Both systems, the main magnetic system and the ions, were regarded as
sublattices (Section 3.1) with magnetizations, respectively, M; and M, = N9,
where N, is the concentration and 901, is the magnetic moment of the ions. The
Landau-Lifshitz equations of motion were written for both sublattices neglecting
the intrinsic anisotropy and dissipation of the first sublattice and assuming the ex-
change interaction between the sublattices to be antiferromagnetic. The solution
of these coupled equations, in the case of small N, results in

2iMyo wET

AH = .
2Mio 1+ w}h7?

(13.10)

Here, wg ~ Av,Mj o where A is the constant of the exchange interaction between
the sublattices. The relaxation time 7; is defined by

- —AMZO’)’2/\2 (13.11)
where ) is the dissipation parameter (Section 1.4) of the second sublattice; its
value can be arbitrarily large.

It was mentioned in Section 3.3 that the system of rare-earth ions on dodec-
ahedral lattice sites in garnets, even in the case of high concentrations, can be
regarded as a sublattice only at low temperatures. The concentration of ions in
the above-considered theory being small, this theory needs justification all the
more. The microscopic theory {87} developed for the case of high temperatures
can serve as such justification. Its result coincides with the high-temperature limit
(wegn € 1) of (13.10) if 7; defined by (13.11) is equal to the relaxation time of
the level populations in microscopic theory.
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It should be emphasized that in both theories, the macroscopic and the micro-
scopic, two essential assumptions were made: (i) the exchange interaction was
regarded as isotropic, and (ii) the interaction of orbital moments with the lattice
(which could be taken into account by means of the crystal field) was neglected.
With these assumptions, the dc components of M; and 9, are parallel, and the
ac effective field Am, acting on the ions, which is transversal with respect to
M, is transversal also with respect to 91,0. That is why the fast relaxation is
regarded as a case of transverse relaxation.

A general theory of transverse relaxation was developed by Van Vieck [419].
Two systems coupled with each other by isotropic exchange interaction are con-
sidered in this theory. The first is described by the magnetization M, which
satisfies the Landau-Lifshitz equation. The second consists of ions, which are
characterized by their energy levels. Taking into account two lowest of them, the
following formula was obtained for the case of a sphere:

AH  Ny9hom ,, b¢ s i\
6H - = <=~ _Hy— =
+i 2 M]()’Yz 02}5, [( h T,)
se i\ be
+ (w + E - ;]) ] tanhﬁ (1312)

where Mo and 901, ¢ are the values at T — 0. In the limiting case of fast relaxation
(w < 8e/h,1/7 ~ b2 /h), the expression for AH following from (13.12) reduces
to (13.10), and 6 H becomes much smaller than AH.

Let us cite now the distinctive features of the fast-relaxation mechanism.

1. The resonance linewidth remains finite at 7' — 0 and passes through a maximum
when 1/7; = 6¢/h; the position of the maximum depends on w only because of
the frequency dependence of 7;.

2. The height of the maximum grows with increasing w.

3. The dynamic shift of the resonance field § H is small as compared with AH.

In the case of resonance relaxation [w ~ é¢/h, 1/7; < é¢/h, Figure 13.7(b)]
the maximal AH value can be much larger than for the fast relaxation, but it
diminishes sharply when w departs from the resonance frequency ¢/ h.

13.2.2 Longitudinal (slow) relaxation

The mechanism of slow relaxation (referred also to as longitudinal relaxation) is
based on the modulation of ionic energy levels by the oscillations of the magnetic
system. Consider, first, this mechanism qualitatively (Figure 13.8). The interval
b¢ between two lowest energy levels is modulated with frequency w. The equi-
librium populations of the levels change with the same frequency, and transitions
between the levels occur all the time ‘trying’ to restore the continuously disturbed
equilibrium.
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FIGURE 13.8

Transitions between ion energy levels in the course of modulation of the levels: (a) in the
absence and (b) in the presence of retardation.
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Suppose, first, that the transitions occur without retardation with respect to the
change of de [Figure 13.8(a)], i.e., from the lower level onto the upper one when
be is decreasing, and vice versa. Then, the average energy Uy, transferred by the
ions to the lattice, is equal to zero, as evident from Figure 13.8(a). But if there is
a retardation [Figure 13.8(b)], i.e., the ionic system has a finite relaxation time 7,
then U is finite and positive. In a stationary regime this energy is compensated by
the energy expended by the magnetic system on the modulation of energy levels.
However, if the retardation is very large (1; — 00), the transitions ‘have no time’
to occur, and again U; = 0. One can believe that the energy transferred from
the magnetic system to the ions and from them to the lattice is maximal when
/7 =w.

The considered mechanism is like the Debay mechanism of dielectric relaxation
(e.g., [227]) or the Gorter mechanism of paramagnetic relaxation [68, 144]. From
the latter it differs in that the modulation of energy levels is accomplished by
magnons instead of photons. It is the same difference as the above-mentioned dif-
ference between transverse relaxation and paramagnetic resonance. A mechanism
analogous to the slow intraionic relaxation was proposed earlier, for electron tran-
sitions between Fe?* and Fe** ions in ferrites, by Wijn and van der Heide [444]
and, in a particular case of ferromagnetic resonance, by Jager, Galt, and Mer-
ritt [450]. The theory of this mechanism was developed by Clogston [75]. It is
fully applicable to our case of slow ionic relaxation based on intraionic transitions.

Proceeding to the study of the Clogston theory, consider again two coupled sys-
tems: magnetic and ionic. The first is characterized by the vector M that satisfies
the Landau-Lifshitz equation. The second consists of N ions characterized by
the energy levels ¢; and their populations V;, so that } ; Nj = N. The coupling
of the systems is not specified in the theory, it is assumed only that the coupling
leads to the variation of the levels with certain frequency w. The equilibrium
populations of the levels N, are determined by the instantaneous ¢; values and
are changing with the same frequency. The instantaneous populations N; are also
changing with the frequency w but, of course, do not coincide with N, due to
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the retardation mentioned above. The main assumption of the theory is

dN;  Njow = N;
= — (13.13)

It means that all populations relax to their equilibrium values with the same
relaxation frequency 1/7;.

Substituting N0, = (Njeo )o + Njeo exp(iwt) and N; = (N;)o + n; exp(iwt)
into (13.13) and regarding the amplitudes 7, and n; as small with respect to
(Njeo)o and (N )o, we obtain

N; =(N)o +

1 + exp(xwt) (13.14)

We will restrict ourselves to the case of umform oscillations and neglect all
anisotropies except one caused by the considered ionic system. Then, the free
energy may be written as

U=-MH+) Nj; - S;T (13.15)
J
where the entropy S; = —k 3, N; In(N;/N) [244]. The first term in the right-
hand side of (13.15) is the free energy of the magnetic system (which includes the
entropy term, as M is the magnetization at a given temperature, see Section 2.1).
1t should be noted that now we may not use formula (13.2) for the free energy of
the ionic system because it is valid only in the equilibrium.
The linearized equation of motion for the eigenoscillations of the magnetic
system is

iwm = —ym X Herg — YMp X het (13.16)

where H.so and hes are, respectively, the dc and the ac components of the effective
field

B =~ (302 s ome 1217

It is very important that the differentiation in (13.17) is carried out at constant
populations N;. Indeed, the right-hand side of (13.16) is the force moment acting
on the system; in calculating it, the partial derivatives of energy must be taken
with respect to the angles, i.e., to the M components, and populations N; are to
be regarded as constant factors. So, in calculating Her by (13.17) the last term of
U in (13.15) must not be taken into account.

In the considered theory the Cartesian coordinate system with the z-axis directed
along My is used (Figure 13.9). In this system, m, = Mo66 and m, = Mod¢
where 60 = 8 — 8y and 8¢ = (¢ — o) sinfy. The components of Hes in this
system, according to (13.16) and (13.15), are

O¢; e
efz: M ZN] : efy M ZN] - Hefz:()

(13.18)
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FIGURE 13.9
Coordinate system in the Clogston theory.

where the populations IV; are determined by (13.14). These components and
the derivatives 9¢; /06 and O¢; /¢ are expanded in series near the point g, .
They are substituted into the projections of (13.16), and only the terms of the first
order are retained. The condition of compatibility of the obtained equations gives
the complex frequency w = w’ + iw”. In the case of small ion concentration,
neglecting the terms with products of N, or their derivatives, we obtain

!/

6H = Hy — "’; = (6H)oo + (6Ho)oo

_ Je £j5 325j
(8H)oo = - 2M Z J°°((992 a¢2)

(6Ho)oo = ZLMOPTLZT? (13.19)
AH = 2‘;’” = MLOPQ (13.20)
Pz_%:(@géoo%jtﬁg%%) (13.21)
= Hﬁ"# (13.22)

All the derivatives in (13.19) and (13.21) are taken at equilibrium angles 6 and .
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FIGURE 13.10
Frequency dependences of A H and of the resonance-field dynamic shifts in the theory of
slow relaxation.

The expressions (13.19) can be rewritten in the form

6H = (6H)o + (6Hu)o

o LS [0 (y 05,9 (. 95
(8H)o = =337 ; [39 (N"” ae) * 5% (N”"%)]
1 wzfiz

2My 1+ w27’

As (6H,)o — 0 when wr; — 0 (Figure 13.10), the term (§H)j is the static shift
of the resonance field. It coincides, as it can be shown, with the 6 H value obtained
in Section 13.1. The term (6H,,)oo in (13.19) approaches zero when wr; — 00,
s0 (§H ) is the resonance-field shift when the populations of the levels ‘have no
time’ to relax to their quickly changing equilibrium values. According to [68],
this shift can be named adiabatic. It is interesting that both quantities (6H )o
and (6H ), are obtained by double differentiation of the equilibrium energy
> ; Njoog; With respect to the angles 6 and ¢. The first differentiation (which
is related to the calculation of the effective field) is performed in both cases at

(6Hu)o = (13.23)

Njs = const. The second differentiation is performed at Njo, = const in
calculating (6 H )., and taking into account the angular dependences of N, in
calculating (6 H )o.

Important relations
1
(6H,)o = w*TH(6Hy)oo = _§miAH (13.24)

follow directly from (13.19), (13.23), (13.20), and (13.22).

Further development of the slow-relaxation theory was performed by Hartmann—
Boutron [174] in two directions. First, it was shown that the anisotropy of exchange
interaction results in the modulation of ionic energy levels by the oscillations of
magnetization. Indeed, the anisotropy of the exchange interaction between mag-
netic and ionic systems leads to the fact that the transverse (with respect to M)
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ac magnetization gives rise to the longitudinal (with respect to M) ac effective
field acting on the ions. This field modulates, even in the first (linear) approxi-
mation, the energy levels of the ions. It should be noted that another cause of the
appearance of the longitudinal ac field modulating the ionic energy levels is the
crystal field, which also leads to nonparallelism of 9%, and My if the spin—orbital
interaction is present.

The second direction in which the slow-relaxation theory was improved by
Hartmann-Boutron [174] is the replacement of (13.13) by the more general equa-
tion
= —(N; = Nja) 3 —— + (N, = Nyroo) — (13.25)

£ N ETY £ ) T'I"
jr=j 93 ey 7’3

dN;
dt

The first term in the right-hand side of this equation represents the number of
ions leaving per unit time the considered level. The second term is the number
of ions coming onto this level from all others. The ‘reverse’ terms, analogous
to the second term in (13.25), were omitted in Sections 11.2, 11.3, and 12.5;
studying the relaxation of magnons, we assumed the numbers of all quasiparticles,
except the considered ones to be equal to their equilibrium values. It should be
noted that in some cases this assumption is not valid even for the relaxation of
quasiparticles, and particularly, in two cases. The first case is when the number
of primary quasiparticles is large, as for the nonlinear damping of parametrically
excited magnons (Section 10.5). The second case is when a certain region of the
secondary-quasiparticle spectrum is overfilled due to some other process. This
situation is analogous to one considered in this chapter. Magnetic oscillations
modulate all the ionic levels, and the difference between the instantaneous and
equilibrium populations of all levels is not to be neglected.

Consider now the important particular case of rwo energy levels. In this case,
N1+ Ny = Ni o + N3 o = N, and equations (13.13) for N; and N, with the
same relaxation frequency

11 1
R . (13.26)
T T2 T

follow from (13.25).
The distribution of ions over the levels in equilibrium state is the Boltzmann
distribution [244]

Nizoo = exp (l:;ﬁ> (13.27)

where p is the chemical potential. Finding it from the condition N} oo + N2 oo = N,
we get

-1
Nip2=N [l + exp (;E)] . (13.28)
kT

Substituting €12 = €9 F 6¢/2 and Nj 2 from (13.28) into (13.21), we obtain
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FIGURE 13.11
Temperature dependence of the factor P/ P, given by (13.29), in the case of two levels.
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The static resonance-field shift (§H)o calculated with (13.23) coincides, as it
should, with (13.4).

The frequency dependence of the linewidth A H is determined by the factor 2
in (13.20). The linewidth approaches zero when wr; — 0 and when wr; — oo
and passes through a maximum when wr; = 1 (Figure 13.10), in accordance with
the above-stated qualitative consideration. The AH temperature dependence is
determined by both factors P and (2 because 7; depends on 7'. The relaxation
time 7; usually decreases with growing temperature (see below), and the factor
2 has a maximum at such temperature T at which w7,(T') = 1. The factor P,
according to (13.29), passes through a maximum at k7p = 0.656¢ (Figure 13.11).
The function § H(T") can have one maximum or two, depending on the difference
between T and Tp. The dynamical shift (6 H,, )¢, according to (13.23), has a
temperature minimum near 7p.

Thus, the distinctive features of the slow (or longitudinal) relaxation mechanism
are the following.

1. AH approaches zero at 7' — 0 and has two temperature maxima; one of
them, caused by the relaxation factor (2, is shifted to the higher temperatures with
increasing frequency; very often the two maxima merge into one.

2. The height of the AH temperature maximum depends slightly on frequency;
the only reason of this dependence is the difference in positions of the {2 and P
maxima.

3. The angular dependences of AH pass through minima when 8(6¢)/98 and
8(6¢) /8¢ go to zero, e.g., at the points of near-crossing of the ionic levels.
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4. The dynamic shift of the resonance field is always negative; the ratio of its
absolute value to A H is proportional to frequency.

13.2.3 Relaxation of ionic-level populations

The processes of relaxation of the ionic-level populations, which determine the 7;
values, are similar to, in some respects, the relaxation processes in paramagnetic
substances [15]. However, the spin—spin (i.e., in our case, the ion—ion) relaxation
does not now play an important role, as distinct from paramagnets, because
the interaction between the ions is much weaker than their interaction with the
magnetic system. Besides, the exchange splitting of the levels (Section 13.1) is
much greater in ferromagnetic materials than the splitting in an external field,
in the case of paramagnets. And, finally, along with the relaxation processes
involving phonons, analogous processes with the participation of magnons (ion—
magnon processes) can take place. Such processes were investigated theoretically
by Buishvili [64] and Huber [186].

Processes in which more than two quasiparticles, phonons or magnons, take
part are of negligible probability. For one-particle or so-called direct processes,
the relaxation time, as Orbach [305] has shown, is

Ti = 7o tanh % (13.30)
Here, 79 is also a function of ée, and the character of this function depends on
which interaction leads to the process. The orbital-lattice interaction dominates
in the case of ion—phonon processes, and 7y decreases with growing 6. For
ion-magnon processes, the exchange interaction plays the main role, and the
dependence of 7y on é¢ is different for different ions [186]. For example, close to
the near-crossings of energy levels, Ty decreases with growing d¢ for Yb3* ions
on dodecahedral sites in YIG and increases for Tb** ions on the same sites.
The two-quasiparticle Raman and Orbach processes [305] (Figure 13.12) do

A Cc 2 c/ /s
& / l 8e = g, 87 &, A
€, R de = &, — &, &
k/ B ’
I de =g, — g,
&k,

FIGURE 13.12

Elementary processes of the relaxation of ionic-level populations and temperature de-
pendences of their contributions to the relaxation frequency (schematically): direct pro-
cesses (A), Raman processes (B), and Orbach processes (C).
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not differ in their final result. But, for the Orbach process, a third, higher level is
needed. This leads to different temperature dependences. For Raman processes,
7; is proportional to 7~ in the case of non-Kramers ions and to 7'~° in the case of
Kramers ions. The 7; temperature dependence for Orbach processes is exponential.
One can see from Figure 13.12 that direct processes dominate at low temperatures,
whereas Raman and Orbach processes dominate at high temperatures.

13.2.4 Experimental data

Discussing the results of experimental investigations of ionic relaxation processes,
we must take into consideration that the ions are often situated on several nonequiv-
alent lattice sites. The energy levels are different for ions on different sites due to
different orientations of M, with respect to the local crystal axes. Thus, all ex-
pressions for AH and § H are to be replaced by their sums over all nonequivalent
sites.

Let us consider first the rear-earth ions in garnets. It has been mentioned
above that the two-level model is well applicable to a low-lying doublet and to an
‘accidental’ near-crossing of levels. Yb** ions on dodecahedral garnet sites are a
good example of the first case.
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FIGURE 13.13

Temperature dependences of AH and the dynamic resonance-field shift for a
Y3_.Yb.FesOr2 gamet (z = 0.153) for different orientations of My [74]. Open cir-
cles correspond to frequency f = 9 GHz and full circles, to f = 16.8 GHz.
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FIGURE 13.14

Temperature and angular dependences of AH for a Y;3— . Tb,FesO); gamet (z = 3 x 107%)
in the vicinity of one of the near-crossings of Tb** energy levels [373). Frequency
f = 8.66 GHz. The temperature dependences are shown for the angles denoted by
corresponding symbols on the A H vs 6 curve.

The ferromagnetic resonance in a YIG single crystal with a small addition of Yb
was thoroughly investigated by Clarke, Tweedale, and Teale [74] (Figure 13.13).
The 6 H values presented in this figure were obtained by substracting the static
resonance-field shift (measured by the torque-moment method) and the electrody-
namic shift (Section 5.3) from the measured Hyes -- w/7~ values. The AH values
are the directly measured quantities and represent, practically, the contributions
only of the ionic relaxation mechanism. The data shown in Figure 13.13 agree
with the above-mentioned features of the slow-relaxation mechanism. The
values found from these data decrease from ~ 107 to ~ 10~'2 with growing
temperature.

The experimental data for other Kramers rare-earth ions (Nd*t, Sm*+, Dy3+,
and Er’*) [94] seem to be consistent with the supposition that the slow relaxation
mechanism plays the main role for these ions, too. But the absence of a sufficiently-
low-lying doublet makes difficult the qualitative interpretation of the data.

In YIG doped with non-Kramers ions Tb>t, Ho*t, and Pr3*, the ‘anomalous’
AH angular dependences caused by near-crossings of energy levels were ob-
served [94, 373, 156, 9]. In the case of Tb**, strong absorption bands take place
at low temperatures for three M) directions in which the near-crossings occur
(Figure 13.5). To explain these absorption bands in the framework of the slow-
relaxation theory one has to assume the relaxation frequency 1/7; (that is less than
w at such temperatures) to increase sharply with decreasing é¢. This assumption,
made in [373], was confirmed theoretically by Huber [186]. He showed that the
contribution of the above-mentioned direct ion~magnon processes dominates in
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FIGURE 13.15

Temperature and angular dependences of A H for Y3, Pr,FesOy, garnet (x = 9 x 1074
measured at frequency f = 9 GHz [156]. The temperature dependences are shown for
angles denoted by corresponding numbers on the A H vs 6 curve (measured at T = 4.2 K).

this case at low temperatures and leads to the assumed dependence of 1/7; on de.
The minimal ¢ value can be estimated as ~ 2.5 cm™! and the relaxation time 7;,
as ~ 107'% 5. One can see from Figure 13.5 that there are minima at the centers
of all absorption bands, in agreement with the slow-relaxation theory.

The AH temperature dependences in YIG doped with Tb are plotted, for one
of the absorption bands, in Figure 13.14. Two maxima in these dependences can
be associated with the contributions of different levels: the near-crossing pair
(low-temperature maximum) and all other levels (high-temperature one). It is
seen from Figure 13.14 that at high temperatures, when the relaxation frequency
1/7; of the near-crossing levels exceeds w, the angular absorption bands transform
into angular minima. This has been observed for other 4f ions, too, [164] and is in
agreement with the slow-relaxation theory if we suppose that 1/7; increases with
the decrease of d¢.

In YIG with Ho*? ions, sharp 6 H maxima and strong absorption bands were
observed [9] when M), directions lay in one of the {100} planes. In these
directions, as has already been mentioned, the near-crossings of Ho’t energy
levels take place. The absorption bands, as in the case of Tb3*, were split into
two maxima, in agreement with the slow-relaxation theory.

The temperature and angular dependences of AH, for YIG with small addition
of Pr, are plotted in Figure 13.15. In this case, AH grows monotonically with
decreasing temperature (at least, down to 4.2 K) and AH angular maxima are
not split. The same features were observed [99] in YIG with addition of Yb for
M directions (§ = 30° and § = 90°) in which the Yb3* ions penetrating onto
octahedral lattice sites have near-crossing of energy levels (Section 13.1). The
de value can be so small in both cases, of Pr and Yb on octahedral sites, that the
contribution of the transverse relaxation is possible.
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FIGURE 13.16

Temperature dependences of the contribution of Fe?* ions to AH for Ge-doped YIG at
different M, orientations [172). f = 9.25 GHz, Fe?t concentration z = 0.2 mol % (with
respect to Fe** ions), A Hpz+ = AH|.=02 — AH|.=0. © 1972 Elsevier Science Ltd.

The influence of Fe?* ions on ferromagnetic resonance in YIG was detected as
early as in 1961 [165, 381] and was investigated in detail later on (e.g., [401,175)).
In addition to the intraionic transitions considered above, the electron transitions
between Fe2t and neighboring Fe3t ions are possible in this case. Their influence
on ferromagnetic resonance will be studied in Section 14.1. We mention here only
that the characteristic frequencies for such transitions are usually much lower than
the frequencies 1/7; for the intraionic transitions. The temperature dependences
of AH in YIG containing Fe’ ions are plotted in Figure 13.16. The low-
temperature maxima in these dependences are caused by intraionic transitions and
can be described in terms of the slow-relaxation theory. The high-temperature
maxima are due to interionic electron transitions. Fe*t ions, which arise in YIG
as a result of the substitution of two-valent ions for the three-valent ions (e.g.,
Ca?t for Y1), lead to A H temperature maxima [402] similar to such caused by
Fe2* ions. The reason for this is the same level splitting (Table 13.3) for Fe?t ions
in an octahedral environment (which is preferred by these ions) and for Fe** ions
in a tetrahedral environment.

Fe2t and Fe** ions can arise in YIG single crystals and epitaxial films grown
from highly pure starting materials, without any additions, as a result of ions Pt4*
penetrating into the lattice from the crucible and of Pb2* ions penetrating from
the melt. The diminishing of the amount of these ions, or compensation of their
effect, e.g., by small addition of Ca if Pt*t ions dominate, is a necessary condition
for obtaining YIG crystals or films with small AH values.

Ferromagnetic resonance in YIG with small additions of Mn and Co was also
investigated [169, 388]. However, the interpretation of these experiments presents
problems because these elements can have different valencies, can occupy different
lattice sites, and can stimulate the change of valency of Fe ions.
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The 3d ions with strong spin—orbital coupling in ferrites with spinel structure can
exert, as White suggested [440], the same influence on ferromagnetic-resonance
anisotropy and linewidth as the above-discussed ions in YIG. It soon became
clear that the slow-relaxation mechanism also operates in spinels. But the above-
mentioned difficulties in interpretation arise here, as well. The most attention
was paid to the ferrite Mn;_,Fe;_, 04, in which the fast relaxing ions Mn3+
and Fe?* can exist [236]. Two AH temperature maxima were observed in some
samples of this ferrite [73], the low-temperature caused by Mn3* ions and the
high-temperature caused by Fe?* ions.

The ferromagnetic crystals with spinel structure MCr,Xs (M = Cd, Hg and
X =S, Se) are also good objects for studying the ionic relaxation processes.
In Figure 13.6 the AH angular dependences for one of these crystals have been
shown. The AH maxima in (100) and (110) directions are caused by the near-
crossings of levels of the Cr** ions, which arise due to Ag addition in the course
of the crystal growth. The maxima in (111) directions are caused by Cr?* ions,
which arise due to Se vacancies emerging in the process of annealing the sample.
The slow-relaxation mechanism appears to dominate in this case, too, even though
some of its characteristic features (A H low-temperature maxima and splitting of
the AH angular maxima) have not been observed. Both were observed in another
crystal of this group, HgCr,Se4 [107].

It follows from the considered examples that the ionic relaxation process is
widely present in non-metallic ferro- and ferrimagnetic substances. In many
cases, especially at low temperatures, this process forms the main channel of re-
laxation in ferromagnetic resonance. The ionic relaxation process makes essential
contributions to energy dissipation in antiferromagnetic crystals (e.g., [354]) and
in magnetically ordered metals (Section 14.2), as well.

The ionic relaxation process is based on the transitions between energy levels of
individual ions. Therefore, the contributions of this mechanism to the spin-wave
dissipation parameter A H}, should not depend essentially on the wave number k.
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14.1 Effect of charge carriers in semiconductors

Until now, studying oscillations and waves in magnetically ordered substances,
we did not take into account the conductivity, i.e., regarded these substances
as dielectrics. But actually they are, usually, semiconductors or metals. True,
the ferrites used in microwave engineering (as well as in most experiments on
ferromagnetic resonance and spin waves) are semiconductors with such small
conductivity that the effect of charge carries can be neglected. However, for some
ferrites with larger conductivity (e.g., [236]), this effect is essential. Moreover,
there are magnetic semiconductors [284], which combine magnetic ordering with
conductivity as large as for ‘good’ semiconductors. And, finally, there are ferro-
magnetic, ferrimagnetic, and antiferromagnetic metals, in which charge carriers
have the determinative impact on all dynamic magnetic processes.

The theoretical treatment of magnetic oscillations and waves in conducting
media is based on simultaneous solution of the Maxwell equations, equation of
motion of the magnetization, and equations of motion of the charge carries. The
peculiarities of the solutions and the nature of the observed phenomena depend,
first of all, on the relationship between the dimensions of the sample and the skin
depth § (Section 4.2). In the present section the limiting case of § > d will be
considered, where d is the characteristic dimension of the sample, i.e., the radius
of a sphere or the thickness of a plate. This case is realized, in the microwave
region, for spheres of common ferrites, as well as for thin films of materials with
much larger conductivity.

14.1.1 Damping of magnetic oscillations caused by conductivity

Let us consider the contribution of conductivity to the dissipation parameter of
magnetization oscillations (in the case of § 3> d) using, as an example, the uniform
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oscillations in a small ferromagnetic sphere [155]. The method of successive
approximations may be applied. The magnetization in a nonconducting sphere
will be the zero approximation. In the first approximation, the electric field induced
by this magnetization will be found. The Joule losses of the current excited by
this field will contribute to the damping of magnetic oscillations.

We will limit ourselves to the oscillations near ferromagnetic resonance and
assume the resonance line to be sufficiently narrow. Then, |m| >> |he| (where m
is the ac magnetization and h, is the external ac field), the polarization of m is
near circular, i.e., m ~ m(xo — iyo), and the ac magnetic induction is

4
b=h+47rm=he—?7rm+47rm:8%m. (14.1)

To find the ac electric field we have to substitute the zero-order induction (14.1)
into the first of equations (6.4). The result of such calculation, performed by
Pistol’kors and Sui Yangshen [316], can be represented in the form

4 . .
e = —;ko [(—xo + iyo) 2z + 2o (z — iy)Im. (14.2)

It is worth nothing that, for sufficiently narrow resonance line and not too small
asample, the field e; turns out to be much larger than the field he and, hence, much
larger than the electric field in the resonator or waveguide in which the sample is
placed. Assume, e.g., that the radius of the sphere R = 0.5 mm, My = 139G,
and AH = 0.5 Oe. Then, taking into account that m =~ Mohe/AH (Section 1.5),
we get, at Ao = 2m/ko = 3 cm, the electric field at the surface of the sphere
e1max ~ 100 he. According to (5.46) and (1.120), a resonator containing such a
sphere will have a quality factor Q@ ~ 5. It is easy to make sure that ej max Will be,
then, as large as 10 kV cm~! when the power absorbed in the resonator is only
~1W.

According to (4.75), the power of electric losses caused by the field e; is

"
p, =2 / les |2V (143)
87'(' 14

where the integration is over the sphere volume. This power is drawn from
the energy of magnetic oscillations and makes a contribution to the dissipation
parameter

P,
AH, = — 14.4
YWo (144)
where W, is the energy of the uniform oscillation mode. According to (7.68),
2
wm
= . 14.5
0= 220 (14.5)
After integrating in (14.3) with regard for (14.2). we get from (14.4)
4
AH, = —¢"4n My (hoR) . (14.6)

45



14.1 Effect of charge carriers in semiconductors 365

600
7;
S
5 400

200

0 100 200 300 400
T (K)
FIGURE 14.1

Temperature A H dependences for single-crystal spheres of ferrite Ni<.,75Fe(2,f;5ch+O4 at
frequency 24 GHz [450]. Numbers by the curves denote the sphere diameters in millimeters.
Solid lines correspond to My || (111), and dashed line corresponds to Mj || (100).

Thus, the contribution of conductivity to the linewidth is a dimensional effect.

The value of £ is less than 0.01 for stoichiometric single-crystal ferrites, as well
as for most of polycrystalline microwave ferrites. For spheres of such materials
with R < 1 mm, the values of AH, are negligibly small (less than ~ 0.02 Oe).
But they become essential for materials with higher conductivity, e.g., for ferrites
containing Fe?t. The conductivity of such materials and, hence, AH, increase
with growing temperature (Figure 14.1).

Formulae similar to (14.6) were obtained by Marysko [270] for other sample
shapes. The order of the values and the dependence on frequency and the charac-
teristic sample dimensions remain the same as in (14.6). Analogous calculations
can be carried out for nonuniform oscillations and for spin waves. But it is obvious
that the AH,, values will be much smaller because the role of 2R will be played
by the wavelength 2 / k or—for nonuniform modes—oby the distance at which the
ac magnetization phase changes by 27.

14.1.2 Influence of interionic electron transitions

In some ferrites, the ‘jumping’ mechanism (referred also to as the valency-
exchange or Vervey’s mechanism) is the dominant mechanism of conductivity
(e.g, [236]). In such substances, along with the main magnetic ions, e.g., Fe3*,
there exist ions of the same element but with other valences (Fe?t or Fe*t). Such
ions are usually fast-relaxing ions. Their contributions to ferromagnetic-resonance
anisotropy and relaxation caused by the intraionic transitions were studied in de-
tail in the preceding chapter. But the interionic transitions, i.e., the transitions of
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electrons between these ions and the neighboring 1ons with the main valency, can
occur, as well. These transitions are associated with getting over certain (usually
rather low, of the order of 0.1 eV) energy barriers and are caused by the thermal
motion. If an electric field is applied, a prevailing direction of the transitions ap-
pears, and an electric current arises. In a high-frequency electric field, the inertia
of the transitions manifests itself, and electrical losses appear. They pass through
a maximum when the frequency of the field w becomes equal to the relaxation
frequency 1/7 associated with the transitions.

Prevailing directions of such thermally activated transitions can be determined
as well by the magnetization and can change (with delay 7.) with the variation of the
magnetization direction, e.g., at ferromagnetic resonance. The theory considered
in Section 13.2 is fully applicable to the interionic transitions; moreover, it was
developed by Clogston just for this case. The energy levels ¢; are now the levels
of the complexes that differ in the appearance of an extra electron (as in the case
of FeZt) or in the lack of an electron (as for Fe*") at different neighboring ions.
Then, the difference in ¢; values is due to the difference in angles between the
direction of M and the local axes of ions. Thus, the number of levels is equal to the
number of nonequivalent lattice sites that can be occupied by the considered ions.

Fe?* jons prefer the octahedral sites [236],and there are four such nonequivalent
sites in spinel and garnet structures (Section 3.3). That is why Clogston examined
the model with four levels ¢; and found, using formula (13.20), that AH is
maximal when M || (100) and is minimal when Mp || (111). Such anisotropy
(resulting from the interionic Fe3*—Fe?* transition) was observed for the high-
temperature maximum of AH in YIG with a Ge addition [172]. As to the
experimental data for the Ni-Fe ferrite (which Clogston tried to compare his
theory with), in that case the AH anisotropy has the reversed sign (Figure 14.1).
It later became clear that no contradiction exists here because the temperature AH
maxima in Ni—Fe ferrite are caused by intraionic transitions (Section 13.2).

It should be noted that at very low temperatures the interionic electron tran-
sitions, practically, do not occur at all during the time ‘at the disposal’ of ex-
perimentalists; this is one of the reasons of the induced anisotropy in ferrites
(e.g., [236]). At higher temperatures, when 7, becomes comparable with the time
of experiment, the retarded interionic transitions Jead to nonstationary phenomena
known as magnetic aftereffects. At still higher temperature, when 1/7, becomes
comparable with the frequency w of the ac magnetic field, the same transitions
result in magnetic viscosity, i.e., in the losses described by the imaginary part of
the permeability. And when 1/7. becomes as high as the ferromagnetic-resonance
frequency (usually at temperatures higher than the room temperature), the above-
mentioned contributions of interionic transitions to Hys and AH take place.

The interionic transitions can occur under the influence of light, which leads to
the interesting photomagnetic effects, in particular, to the light-induced magne-
tocrystalline anisotropy. This phenomenon was investigated, in the case of YIG
with addition of Si, by Dillon, Gyorgy, and Remeika [96].

One note more: the diffusion of atoms or ions in the crystal lattice can also
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FIGURE 14.2

Characteristic time vs temperature for different processes and regions in which these
processes manifest themselves in different phenomena (schematically). The dashed line
corresponds to the experimental data shown in Figure 14.1.

lead to the induced magnetocrystalline anisotropy or, at higher temperatures, to
the magnetic aftereffect. As the characteristic time of the diffusion is much lon ger
than the relaxation time of electron transitions, the phenomena caused by the
diffusion are shifted to much higher temperatures. The positions of all mentioned
phenomena on frequency and time scales are shown—quite schematically—in
Figure 14.2.

14.1.3 Interaction of spin waves with charge carriers

Let us discuss now the influence of charge carriers on the propagation of magnetic
waves. The permittivity ¢ cannot be regarded now as a real scalar quantity, as
in Chapters 6 and 7, but it is a tensor with complex components depending on
frequency and, in general, on the wave vector. To find this tensor we must use the
equations of motion of the charge carriers. Because of the distribution of carriers
over the velocities V', the function of the equation of motion is fulfilled now by the
Boltzmann kinetic equation for the distribution function f(V,r,t) (e. g., [253]).
Having found this function for each type of carriers, at given values of the electric
field E and magnetic field H, we can then calculate all quantities depending on
the carriers, in particular, the concentrations Ny(r,t) = [ f(V,r,t)dV and the
mean velocity

V(rt)= Ni /st V,r,t)dV (14.7)
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where s denotes the type of carriers. The current density

J = Z e N,V (14.8)

where e, is the charge of the s-type carrier. If the Ohm law holds, the conductivity
& and (for harmonic processes) the complex permittivity (4.18) can be obtained.
(The ‘dielectric constant’ &4, in the microwave frequency range, can be regarded,
really, as a constant.)

In the problem of interaction of magnetic waves with charge carriers, the so-
called hydrodynamic approximation (e.g., [317]) can be used. The carriers of each
type are entirely characterized, then, by the following parameters: concentration
N,, mean velocity V,,! and mean frequency of collisions 1/7,. The equation of
motion in this approximation can be written as

Vs
ot

Ve
mSNS TS ’

+(stm=e—“(E+1mxB)+
ms c ‘

where m is the carrier mass and P is the pressure. This equation can be derived,
with appropriate assumptions, from the Boltzmann kinetic equation. It can be
regarded, as well, as the Newton equation of motion for carriers in a volume
element moving with the velocity V,. The left-hand side of (14.9) is the total
derivative dV, /dt. The terms in the right-hand side are: the Lorentz force, the
force caused by pressure gradient, and the frictional force caused by the collisions.
We limit ourselves to one type of carriers (electrons) with the charge e and neglect
the ‘pressure’ term in (14.9).

All quantities in (14.9) are the sums of steady and alternating components.
Regarding the latter as small and assuming that their dependence on time is
harmonic, we obtain the linearized equation for the complex amplitudes

iwv+(%\7)v=—|ﬂ)—| (e+l%xb+lvao)—z. (14.10)
me c c T
(An assumption has been made that the steady velocity Vi does not depend on
coordinates.)

We will consider the solutions of (4.10) for a uniform plane wave propagating
along or perpendicularly to the direction of the steady magnetization (Figure 14.3).
In both cases the drift velocity V, will be parallel to the direction of propagation.

In the first case (k || Vo || Bo), projecting (14.10) onto axes z and y (the
z-axis is directed, as usual, along Bp) and passing to the circular variables v+ =
Vg £ vy, etc., we get

1 .
e (iw:Fin—ikVo+—> =—Iﬁ1;’/eiilvobi) (14.11)
T Me \ c

11n what follows, the mean velocity will be denoted, simply, by V5.
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Particular cases of wave propagation in a medium with drifting charge carriers.

where wg = |eg| Bo/ (nec) is the cyclotron frequency. To exclude by we use the
Maxwell equation (4.7), from which it follows by = +i (ck/w) ex.
Linearizing (14.8), in our case of one type of carriers, we get

3 = —leo| (Nov + nVp). (14.12)

But the second term in the parentheses is small, and we neglect it. Passing
in (14.12) to the circular components of 7 and v, we find, using (14.11), the
conductivity o4, and, finally, taking into account (1.18), we obtain

w_g 1-kVp/w
ww—-kVWFwp—i/T

47 Npe?
wp =1/ _—”mfeo (14.14)

is the Langmuir plasma frequency [317].

We are interested in the influence of carriers on the slow (spin) waves in a
ferromagnet (Section 4.2). In the case of k || By, the wave with right-hand
circular polarization is such a wave. Therefore, we must take the upper signs
in (14.13). In the second particular case (k L By), the wave with electric field e
directed along By is the slow wave. For this direction of e, proceeding analogously
to the previous case, we find

Ex = &g — (14.13)

where

w2 1= kVp/w
p 0
=y — —— A7 14.15
£l = e ww—kVp-i/r ( )

Thus, in both cases the tensor ¢ components are complex and depend on w, k,
and, in the first case, also on the steady magnetic field. Electromagnetic waves in
such media, the so-called electrokinetic waves, have been thoroughly investigated
(e.g.,[557]). The waves with circular polarization propagating along By are called
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helicons, and the linearly polarized waves propagating perpendicularly to By are
called the cyclotron waves.

Separating the real and the imaginary parts of the obtained expressions for €
components, we get, in the first case,

l=w—g 1 -kVo/u .
WT (W — kVp 2 wp)? ~ (1/7)

€ (14.16)

In the second case, in the expression for ¢f the term wp is absent. In both cases
¢" decreases with the growth of 1} and becomes equal to zero at Vo = w /k = vph.
This means that the electric losses are compensated by the drift of the carriers.
The mechanism of the compensation is that the Lorentz force |eo|/(mec)Vo X b
excites the ac current in the direction antiparallel to the ac electric field e. When
Vo > vpn, the quantity ” becomes negative. And if there are no other losses,
except those caused by the conductivity, then a wave propagating in such medium
will be amplified. The energy will be drawn from the source that accelerates the
carriers.

It is easy to make sure that, when Vj and k make an arbitrary acute angle, the
condition of loss compensation is

kVy > w. (14.17)

It is worth noting that this condition coincides with the condition of the Cherenkov
radiation [246] of electromagnetic energy by electrons moving in dielectric with
velocity Vp.

Suppose now that the medium is a magnetically ordered one, e.g., a ferromagnet.
Then, to obtain the dispersion relations of electromagnetic waves in such a medium
we have to find the solutions of Maxwell’s equations, the equations of motion of
charge carriers, and the Landau-Lifshitz equation of motion of magnetization;
the boundary conditions should be, of course, taken into account. For waves
in semiconductors (but not in metals, see Section 14.2) all the characteristic
dimensions, including the carrier mean free path, are smaller than the wavelength
in the microwave range. Under this condition, we may seek the solutions of
Maxwell’s equations with the parameters  and p found beforehand from the
corresponding equations of motion.

For an unbounded medium, the formulae given in Section 4.2 can be used,
e.g., formula (4.42), for waves propagating along Mo, and formula (4.53), for
waves that propagate perpendicularly to Mp. The waves for which the dispersion
relations are found in such a way are mixed magneto-electrokinetic waves. They
have been investigated in detail in many important cases (e.g., [386]). These mixed
waves, analogously to the magnetoelastic waves (Section 12.3), can be regarded
(in terms of coupled waves) as a result of the interaction of magnetic (spin) waves
in a nonconducting medium and electrokinetic waves in a medium with g = 1.
Similar to the magnetoelastic waves (Section 12.3), the interaction is the strongest
near the crossing points of the dispersion curves for the unperturbed waves. Far
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Dispersion curves for spin waves in an infinite medium and for surface nonexchange
magnetostatic waves in tangentially magnetized films. The straight line 1 corresponds to
Uphmin Of spin waves, and the straight line 2 corresponds to a certain drift velocity. w)
and 6w, are the frequency bands in which (without allowance for magnetic losses) the
amplification by drifting charge carriers is possible in films with thicknesses, respectively,
d; and d,.

enough from these points, the spectrum of mixed waves consists of the magnetic
and the electrokinetic branches more or less perturbed by the interaction.

With allowance for losses (caused both by the conductivity and the imaginary
parts of 1 components) the dispersion equations for the mixed waves become
complex. In the case of stationary waves, w is real and the solutions of these
equations have the form £ = k' — ik”. And if the drift velocity and the concen-
tration of the carriers are large enough, the losses are compensated, £” becomes
negative, and the amplification of the wave takes place. Not too near the crossing
point, we may speak of the amplification of spin waves by drifting carriers. The
possibility of such an amplification was predicted by Trivelpiece et al. [406] and
investigated theoretically by Akhiezer, Bar’yakhtar, and Peletminskii [13] (see
also [14]) on the model of an electron beam piercing the ferromagnet. The beam
velocity should be, in any case, larger than the minimal spin-wave phase velocity,
which according to (7.9) is Vphmin = /7w. For YIG at microwave frequencies,
Uphmin ~ 10°. Such beam velocities are easily achievable in vacuum, but the
model of an electron beam piercing a ferromagnetic sample is hardly realizable.

The amplification of spin waves by drifting carriers in a semiconductor was
investigated by Makhmudov and Bar’ yakhtar [268]. It was later shown [80] that
for full compensation of losses, i.e., for amplification, such parameters are needed
(AH < 0.3 Oe, Vy ~ 10% which can hardly be obtained in one substance.

Therefore, great attention has been paid to the problem of amplification of waves
in composite structures that contain adjoining layers of ‘good’ weakly conducting
ferrite and of ‘good’ nonmagnetic semiconductor. This problem was first studied
by Schlomann [350] on a model of a semi-infinite ferrite and a thin semiconductor
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Calculated frequency dependence of the amplification coefficient of the surface mag-
netostatic wave in a ferrite-semiconductor structure [49]. d = 36 um, h = oo,
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layer. Lukomskii and Tsvirko [260] and Bini, Millanta, and Rubino [49] investi-
gated the problem for a surface magnetostatic wave (Section 6.2) in a thin ferrite
film. It was shown that, if magnetic losses are not taken into account, amplification
begins at Vo/vph = 1 (kK = k, in Figure 14.4) and intensifies with the growth of
this ratio. It is seen from Figure 14.4 that the frequency band of the amplification
is larger the thinner the ferrite film.

The allowance for magnetic losses in the ferrite film leads to the narrowing of the
frequency band in which the amplification takes place (Figure 14.5): from the low-
frequency side of the band, because the amplification begins now at Vo /vpn > 1,
and from the high-frequency side, because the contribution of magnetic losses to
k" increases with growing k' due to the decrease of the group velocity.

The amplification of magnetic waves by drifting charge carriers—despite re-
peated attempts—has not been as yet reliably observed in experiment. The main
reasons for this are: the difficulty of combining the necessary parameters in one
substance (for uniform magnetic semiconductor) and narrow frequency band and
criticality of the conductivity value (for composite structures).

It should be noted that the above-considered amplification of a stationary wave
(described by negative k" at real w) is often referred to as the convective instability;
the increase of the field amplitudes in time (described by negative w'') is called
the absolute instability.

I

14.2 Ferromagnetic resonance and spin waves in metals

In this section, magnetic oscillations and waves in ferromagnetic metals will be
studied. Transition metals of the 3d or iron group (Fe, Co, and Ni), some rare-
earth metals (Gd, Dy, Ho, Er), and many alloys belong to this class. Magnetic
oscillations and waves in ferromagnetic metals are of fundamental interest for
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the study of interaction between the magnetic system and charge carriers. At
the same time, they are of interest, from a practical point of view, as the means
for measurement of parameters of ferromagnetic metals. The application of
ferromagnetic metals in microwave engineering is also not ruled out.

In metals (e.g., [24, 253]), the electrons of the outer, s shells are collectivized
and form the electron ‘liquid’ with the density (number of electrons per 1 cm?®)
n ~ 10?2, The lattice of positive ions is immersed into this liquid. The presence
of the lattice results in the fact that the energy spectrum of electrons in metal
consists of energy bands separated by forbidden gaps. The upper band (or several
upper bands) in metals is not entirely filled. The boundary (at 7' = 0) between
the filled and the unfilled electron states in the k-space (where k is the quasi-wave
vector) is called Fermi surface. The maximal energy of the filled states is the
Fermi energy er [24). In the isotropic case the Fermi surface is a sphere with
radius kg = (37%n)!/3.

In magnetically ordered, in particular, in ferromagnetic metals, the positive jons
immersed in the electron liquid are the ions of elements with unfilled 3d or 4f shells.
It should be noted that the direct exchange interaction of the spin moments of
these ions cannot assure the magnetic ordering (as well as in nonmetallic crystals,
Section 3.1), and the indirect exchange interaction plays an important role. In
metals the exchange interaction via the collectivized s electrons, the Ruderman—
Kittel-Kasuya-Tosida (RKKI) interaction is the most essential. In the case of
4f metals the ionic magnetic moments, to a good approximation, can be regarded as
localized. For 3d metals the delocalization of 3d electrons and their hybridization
with s electrons takes place.

In the microwave range, the penetration length of electromagnetic field into
metal (the skin depth) § is of the order of 10~% cm. This leads to the most
important distinction of magnetic oscillations and waves in metals from such
processes in weakly conducting media, e.g., ferrites. The conductivity can be
neglected in the study of magnetic waves in metals only if the dimension of the
sample (in the direction of the wave propagation) is much less than 6, as, e.g.,in
the case of standing spin waves in thin films (Section 7.2).

The second peculiarity of magnetic oscillations in metals is also caused by
high density of conduction electrons. This peculiarity is the great contribution
of relaxation processes in which these electrons take part to the damping of
oscillations.

14.2.1 Thin-film model

The ferromagnetic resonance in metals (and, in general, the ferromagnetic res-
onance) was first observed by Griffiths [149] in thin films of Fe, Ni, and Co
magnetized tangentially to the film surfaces. The obtained resonance conditions
were originally incomprehensible: the apparent g-factor (found from the ratio of
w to Hp) turned out to be several times larger than two. This ‘anomaly’ was
explained by Kittel [219], who took into consideration the ac demagnetizing field
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and showed that formula (1.93) holds in this case 2 Soon it became clear that for
bulk metallic samples magnetized tangentially to the surface the ferromagnetic-
resonance frequency is approximately equal to

w = wy =~ [Ho(Ho + 47 Mo)]'/? (14.18)

where, as distinct from (1.93), Hy is the internal steady field. Expression (14.18)
follows from (1.92) if the demagnetization factors for the ac field are assumed
to be the same as for a thin surface layer, and the demagnetization factor for the
steady field, to be as for the entire sample. This assumption defines the so-called
thin-film model for ferromagnetic resonance in bulk metallic samples.

Formula (14.18) can be generalized to the case when the steady magnetization
M, makes an arbitrary angle § with the normal to the sample surface. In the
coordinate system with z’-ags coinciding with the normal, all components of

the demagnetization tensor N are equal to zero, except N3 3 = 4m. Passing
to the coordinate system with z-axis coinciding with My direction and using
formula (1.92), we get

w =7 [Ho (Ho + 47 Mo sin?6)] 12

(14.19)
If 8 = w/2, expression (14.18) follows from (14.19), and if § = O (normal
magnetization), w = wy = vHo.

If the angle between M) and the normal varies over the sample surface, the
thin-film model can be used for calculation of the resonance-curve shape in the
‘independent-grain’ approximation (Section 2.4). Similarly to expression (2.61),
without allowance for internal dissipation, we get

X" (@, Ho) = 5 Mo / 6§ [Ho ~ Hies @)]dS (14.20)
S

where S is the sample surface. For a sphere, Hy is determined by (14.19).
Then, the calculation by (14.20) results in the resonance curve x" (Heo) shown in
Figure 14.6. The width of this curve on the (1/2) Xmax level is

[ 2 [ 2
(AH)y = §7rMo + (£> + l(7rMo)2 - (ﬂ) +4(1rM0)2. (14.21)
2 0 4 ¥

If w/y > 27My, then (AH)o =~ (3/2)mMo. It should be noted that such
nonuniform broadening of the resonance curve is the main reason why spherical
samples are not used in experiments on ferromagnetic resonance in metals.

2Having extended this idea to the case of an arbitrary ellipsoid, Kittel obtained [220] the famous
formula (1.93).
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Ferromagnetic-resonance absorption curves in a metal sphere according to the thin-film
model. The dashed curve is calculated by formula (14.20) with w /v = 8w My; the solid
curve is drawn schematically making allowance for the intrinsic losses.

14.2.2 Theory without allowance for exchange interaction

The above-considered thin-film model, which is based on the assumption of a
uniform ac magnetization in the thin surface layer, is very crude. In reality,
electromagnetic waves are excited at the surface of a metallic sample and propagate
with large damping into metal. A theory of ferromagnetic resonance in metal must
be based on examining these waves. If the conductivity of the metal is so large
that & < Ag (where A is the wavelength outside the metal), the waves in the metal
are propagating along the normal to the surface. And if the radius of curvature of
the surface is much larger than 6, the waves may be regarded as plane waves.

Without taking into account the electrokinetic effects mentioned in the previ-
ous section (their influence is usually negligible in the frequency range we are
interested in) and neglecting the electrical crystalline anisotropy, we will regard
the permittivity (4.18) as a scalar quantity. Its real part can be neglected for
usual ferromagnetic metals at microwave frequencies. Thus, we assume that
£ = —ie"” = —i4no /w. If magnetic losses are not taken into account, then, ne-
glecting the magnetocrystalline anisotropy, we will take expressions (1.54) for the
tensor & components. Allowing for magnetic losses, we will use the expressions
that are obtained from (1.54) by the substitution (1.68).

It was shown in Section 4.2 that, in the case of scalar ¢, effective permeabilities
can be introduced for normal waves in a ferromagnet. When M, is perpendicular
to the metal surface (normal magnetization) so that the waves in metal propagate
along My, the two waves with circular polarization are the normal waves, and
Het1,2 = p & pio. In the case of tangential magnetization (with respect to the
surface) the two waves with different linear polarization of vectors e and b are
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the normal waves. In this case, fer; = 1 and sies2 = 1. It is obvious that the
normal waves with parameters depending on frequency and magnetic field in a
resonance manner exert the most important influence on ferromagnetic resonance.
In the case of normal magnetization, the right-hand circularly polarized wave with
Ltef = 14 + ILq is such a wave, and for tangential magnetization, the extraordinary
wave with ger = g1 . The resonance conditions for these effective permeabilities
are just the conditions that are given by the thin-film model: w = wy in the
former case and w = w in the latter case. However, both normal waves for each
direction of magnetization are to be taken into account in the strict theory.

The final result of the theory of ferromagnetic resonance in a metallic sample (as
well as in a nonmetallic one), which permits an experimental test, must consist in
determining how the parameters of an electromagnetic system with such a sample
vary in the region of resonance. For an electromagnetic resonator, the resonance
frequency and the quality factor are such parameters, and for a waveguide, the
coefficients of transmission and reflection. This problem having been solved, it
becomes possible to obtain the parameters of the metal from the measured depen-
dences of the resonator or waveguide parameters on frequency or magnetic field.
The solution of the mentioned problem consists in obtaining the electromagnetic
fields in the resonator (or in the waveguide) and in the sample (which can be a
part of the waveguide or resonator wall). As we, for the present, do not take into
account the exchange interaction, the solution must satisfy only the ordinary elec-
trodynamic boundary conditions. The incident power at the input of the system
should be regarded as the known quantity.

A strict solution of this problem would be very difficult, and the method of
successive approximations is to be used. As a zero approximation, we can take the
magnetic field h(%) in the considered system near the surface of the metallic sample,
assuming its conductivity to be infinite. Then, using the boundary conditions at the
surface, we find magnetic and electric fields of both normal waves in metal. The
sum of their electric fields at the surface is equal to the tangential component of
the electric field e(!) of the resonator or the waveguide in the first approximation.
Using the fields R and e(!), all parameters of the considered system can be
calculated. It is worth noting that the influence of these parameters on the field
h(® can be taken into account, which makes the problem self-consistent and
allows one to increase the accuracy of the solution.

Let us consider a hollow resonator; a part S of its surface is the ferromagnetic
metal, and the remainder (So — S) is perfectly conducting. To find the changes of
the resonator frequency and quality factor caused by the ferromagnetic metal we
can use the Slater perturbation formula (4.96). This formula can be transformed
by introducing the surface impedance (s, defined in the following way:

(no x e)h* = (hh*. (14.22)

Here, e and h are the fields in the resonator at the surface and ng is a unit normal
to the surface. If h(® is linearly polarized, the impedance (; is the ratio e, /h
where e, is the projection of e onto the direction perpendicular to h and no. With
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FIGURE 14.7

Ferromagnetic resonance in metal magnetized tangentially to its surface: (a) coordinate
axes; (b) field dependence of ur and py for permalloy [54]; the curves were calculated
with parameters chosen to fit the experimental points.

allowance for (14.22), formula (4.96) takes the form

- 1 ic
w w0+i_—___cs_

= h®24s 14.23
wo 2Q 2w0W0 S I l ( )

where wy is the eigenfrequency of the resonator with walls of infinitely conducting
metal, W, is determined by (4.84), and the prime at ' is omitted.

Consider first, following Young and Uehling [455], the case of tangential
magnetization (My L ng). Assume that the field h(®) makes an angle ¢ with M,
(Figure 14.7). The normal waves in metal are: (i) the wave with components h; ,
hyy, and e , for which k; = ko,/ep1 and the wave impedance ¢, = e, /h, =
V11 /&; (ii) the wave with components h; , and e; ., for which k; = ko\/c and
G = \/m From the boundary conditions (the continuity of h, and h, at S) it
follows that h; , (y = 0) = h(®sinp and hy , (y = 0) = h(Y cos . Substituting
h(® and the electric field (") = o(h©® cos g + zo( h(© sin ¢ into (4.96), we
get

w—wy .1 ic (y/B1 sin?p + cos?p) (N2
+i— = h(9)%4s. (14.24)
wo 2Q 2(4)0W0\/g S|( )

From the experimental point of view, the entire contribution of the ferromagnetic
wall (14.24) is not of the most interest. Of the prime interest is the change of this
contribution, either when we replace an ‘ordinary’ wall by the ferromagnetic one
or when we pass from the Hj, value at ferromagnetic resonance to its value far from
resonance (where per = 1). To find this change we have to subtract from (14.24)
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an analogous expression but with 1) = 1 and, in general, with other permittivity

€o. Then, taking into account that ¢ = —i4wo /w and g9 = —i4mwoy/w, we obtain
w—wo 1/(1 1 ) 1 . . 9
== — ] =—1{6 1/ -/ sin
@ 5 (Q Qo W, { 1 [( H1R IJ'LL) ¥
+(i — 1) cos?p] + (1 —i)(61)o}/(h(°))2d5. (14.25)
S

Here, 1) g and ) | are determined by expressions (4.38) and (4.39), é; is given
by formula (4.40), and (61 )o is given by the same formula but with the replacement
of the conductivity of the ferromagnet near resonance ¢ by the conductivity o¢ of
the ‘ordinary’ wall or of the ferromagnet far from resonance.

The case of normal magnetization can be treated in a similar manner [455].
Waves with right-hand and left-hand circular polarization are now the normal
waves. If the field h(©) is linearly polarized, the amplitudes of the normal waves
at the surface are equal to h(?) /2. Finding then e{!) = e, + e_ and using the
perturbation formula (4.96), we get expressions resembling (14.24) or (14.25).
Near ferromagnetic resonance the normal wave with left-hand polarization may
be neglected, and we get

w—woy .1 6

2
L i _ - 0
+12Q = W, (iVe+r Ty ;,)/Sl (h ) ds (14.26)

wo

where piy p = |+ pa] + (0" +py) and py o= g+ pa| — (1 + pg) (Sec-
tion 4.2).

Thus, having measured the shift of the frequency and the change of the qual-
ity factor of a resonator with a ferromagnetic-metal wall, it is possible to find
the quantities ¢, r and py r or puy p and p4 1. according to the direction of
magnetization. The result of such measurement and calculation performed by
Bloembergen in one of the first works on ferromagnetic resonance [54] is shown
in Figure 14.7.

14.2.3 Influence of exchange interaction

Because of the skin effect, the ac magnetization near the surface of ferromagnetic
metal is strongly nonuniform, and, hence, the exchange interaction should be taken
into account. Kittel and Herring pointed out as carly as in 1950 [228] that the
exchange interaction must lead to the broadening of the ferromagnetic-resonance
curve in metals by the quantity

D
62
and to the decrease of the resonance field of the same order. This can be justified

in the following manner: the magnetization wave damping out on the distance
~ 6 can be expanded into the Furier integral in the undamped spin waves with the

AHgy ~ (14.27)
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mean k value k ~ 1/6; their resonance fields form a distribution with the width
and the shift of the maximum of the order of D~ ~ D /82.

However, the 6 value in (14.27) depends on the permeability and, hence, on
the linewidth, to which the exchange interaction makes the above-mentioned
contribution. Akhiezer, Bar’yakhtar, and Kaganov [11] showed that this self-
consistent chain of relations can be used in the following way to estimate the value
of AHg. According to (4.39),

)
Vet R

where 4; is the skin depth in a nonmagnetic medium. Near resonance, we may
assume

6=

(14.28)

Ban M,

oy BATMy 2
Hef R (Nef)res AHy + AHy, e

where AHj is the contribution of all other sourses of resonance-line broaden-
ing except exchange interaction and 3 is a factor of the order of unity. It
is easy to make sure that 3 = 2 in the case of normal magnetization and
B = (wr +wnm)/ (wi +wu/2) in the case of tangential magnetization. It
follows from (14.27)—(14.29) that

ﬂD47TM()

AI{ex (AHO + A}Iex) = 52
1

(14.30)

In particular, if AH., > AHj, then

AH,y ~ 61\/5047rM = 2—75\/250Moaw. (14.31)
1 C

As o and My decrease with increasing temperature, the exchange contribution to
the linewidth manifests itself at low temperatures.

In this estimate, as in all the preceding reasoning, it was assumed that the
normal skin effect took place (e.g., [246]), which is the case when the electron
mean free path l; < 6. Then, o does not depend on the skin depth and, for metals
at microwave frequencies, slightly differs from the static conductivity. In the case
of anomalous skin effect [253] when [, > §, some electrons—in greater quantity
the larger the ratio I, /6—Ileave the skin layer before they undergo a collision. This
can approximately be taken into account if o in the expression for § is replaced by

6
Oef = VO — (14.32)
le
where v is a factor given by the theory of anomalous skin effect [253] (v = 5.16
in the absence of magnetic field). Taking (14.32) into account, we obtain, instead
of (14.30),

Brdn MyD?3/?

AH?(AHy + AHy) = =77
1te

(14.33)
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Now, in the case of AHg, > AHy,

2/5 n3/5
,81/47TMO> D (14v34)

AHey ~ ( .
le 5;‘/ 5

The finite value of A Hey, in the absence of magnetic dissipation (that determines
AHy), and the increase of AH,, with decreasing §;, witnesses the fact that the
dissipation of energy of magnetic oscillations is accomplished (for both the normal
and the anomalous skin effect) by the conducting electrons.

A strict theory of ferromagnetic resonance in metals with allowance for ex-
change interaction can be developed in the same way as the nonexchange theory
considered above. But now we must use the expressions for tensor 12 components
found with regard for this interaction, e.g., the expressions obtained from (7.8)
by the replacement (1.68). Substituting these expressions into (4.42), we get (in
the case of normal magnetization, i.e., for 8, = 0) a quadratic equation in k? for
each direction of the polarization rotation. In the case of tangential magnetization
(0, = 7/2), we get from (4.53) a cubic equation in k2 for the extraordinary wave;
for the ordinary wave, k? = k3e. So, in both considered cases (and in an arbitrary
case, as well) there are now four normal waves.

The dispersion relations for these waves were studied by Patton [310]. It turns
out that two of the four waves are the waves with right-hand rotation of the vector
m polarization (Larmor branches, in terms of [310], denoted by the subscripts +),
and the other two are the waves with left-hand rotation (anti-Larmor branches
denoted by the subscript —). One of the two waves with the same rotation of
polarization is an ‘electromagnetic’ (E) wave with large vp, and comparatively
weak effect of exchange interaction; the other is a ‘spin’ (S) wave. The Larmor
‘spin’ wave (S, ), at large k' values, turns into an ordinary spin wave, and the
anti-Larmor ‘spin’ wave has a very large damping.

If the dissipation parameter exceeds a certain value (e.g., a > o = 0.013
for permalloy), the branches E and Sy do not intersect in the w(k', k") space
(Figure 14.8) and conserve their character in the entire space. But their projections
onto w (k’ ) plane do intersect. At a < . these branches, as well as their
projections, repel. This is a general feature of all mixed (or coupled) waves; we
have already encountered it for magnetoelastic waves (Section 12.3).

The magnetic-field amplitudes of all four normal waves in metal can be ex-
pressed in terms of the field h(®) at the surface by the use of four boundary
conditions: two electromagnetic and two supplementary (exchange) conditions
(Section 7.2). These conditions, with the use of the expressions for tensor ﬁ
components, result in the equations for magnetic-field amplitudes. Then, using
the wave impedances of the normal waves, we find (as in the above-considered
nonexchange case) the electric fields of these waves. Their sum gives the field
eV at the surface. Then we can either find the surface impedance (; or, for a
ferromagnetic-metal wall of a resonator, apply the perturbation formula (4.96).

Consider now in more detail the case of tangential magnetization assuming
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TABLE 14.1
Parameters of ferromagnetic metals® [47, 126].

Te AnMy o D
Metal (K) (G) @ 'em™ ¢ ot (O¢ cm?)
Fe 1043 21580 1.03 x 10° 2088 00023 22x107°
F697Si3 21 148

Niz7Fexs 11 000 2.5%x107°
Ni 631 6084  1.46 x 10° 0.027 3.1 x107°
Co 1904 17900  1.60 x 10° 0.027

2The values of all parameters (except T¢) are given at room temperature.

5The Landau-Lifshitz dissipation parameter A; and the exchange constant A, encountered in
many works on ferromagnetic resonance in metals, are related to the parameters cited in the table as
follows: A\ = yaMy, A = DMy/2.

h©® 1 My, ie., ¢ = 7/2 in Figure 14.7(a). The ordinary wave (with e = 1)
is not exited then, and the field in metal consists of three normal waves: an
‘electromagnetic’ wave and two ‘spin’ waves. Their complex wave numbers
k;j (j = 1,2, 3) are determined by a cubic equation in k2, which is obtained
by substituting the expression for p; (with regard to exchange interaction and
dissipation) into (4.53). The wave impedances of the normal waves (; = e; . /h; o
for the considered strongly conducting metal, according to (4.56) and (4.53), have
the form
ickj
CJ - E
This problem was first solved by Ament and Rado [16], with the assumption of
the exchange boundary conditions (7.42) (£ = 0). In the low-frequency limit,

w L wy wy K wpy p=yVDan My /6 € wy (14.36)

the obtained expression for the surface impedance has the form

(14.35)

Vo [wi —w?wy +iow +2(1 + i)p]l/2

b wg —w?fwy +iaw + (1 +1i)p

Go= —(1+1i) (14.37)
4n

Conditions (14.36) are satisfied and, hence, formula (14.37) is approximately valid

in the entire centimeter-wavelength range for metals in which the ferromagnetic

resonance is usually measured (Table 14.1).

One can see from (14.37) that for « = 0 and p = 0, i.e., without allowance for
dissipation and exchange interaction, the resonance frequency (at which { — o0)
Wres = y/WHwWr, which is the low-frequency limit of (14.18). The allowance for
dissipation (a # 0, p = 0)results in a finite real part of the impedance at resonance
and in finite linewidth. If the linewidth is defined at the level (¢2)’ = (¢?)les/2.
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FIGURE 14.8
Dispersion curves of normal waves in metal for tangential magnetization and 6, =
m/2 [310]. Hp = 1135 Oe, o = 0.03, other parameters correspond to permalloy
(Table 14.1). Dashed curves are projections of the solid curves Sy and E4 onto the
plane (&', k).

it is equal to 2aw, i.e., it coincides with the ‘usual’ linewidth AH defined at the
level x" = xl.,/2. This coincidence is caused by the fact that, for a strongly
conducting metal (if only one of the normal waves is taken into account),
¢ = 1%;@ (14.38)

and hence, (¢2)' = (w/0) /4. The shift of the resonance line with respect to its
position at & = 0 turns out to be of the second order in ¢, as in the case of ‘usual’
ferromagnetic resonance in weakly conducting samples (Section 1.5).

Butif p # 0 and is large as compared with aw, then, as one can see from (14.37),
the resonance-line shift and the linewidth are of the same order. Defining them as
in the case of p = 0 and assuming for simplicity that o = 0, we get

AHy, = L 626 D 4n My (14.39)

1

(0Hres) ex = —-92—8-\/ D 47 M. (14.40)

It should be noted that the estimate (14.31) is in a good agreement with (14.39)
(in the low-frequency limit 3 = 2).
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FIGURE 14.9

Calculated field dependences of the surface impedance in the case of tangential magnetiza-
tion for two values of the pinning parameter ¢ [129]. Frequency is 11.5 GHz, all parameters
correspond to iron at room temperature (Table 14.1).

Later, Kaganov and Yui Lu [195, 202] showed that the value of the pinning
parameter £ (Section 7.2) makes a strong influence on the ferromagnetic res-
onance in metals: the quantities AHex and (§Hyes)ex increase with increasing
€. The numerical calculations by Frait and Mac Faden [126] and the theory
by Fraitova [127-129] (Figure 14.9) confirmed this dependence.

The case of normal magnetization can be analyzed in a similar manner. Two
waves with the right-hand and two waves with the left-hand circular polarization
are now the normal waves. This problem was solved for £ = 0 by V. L. Gure-
vich [167]. The obtained expression for ¢ in the low-frequency limit differs
from (14.37) by the replacement of w? /wur with w. Formulae (14.39) and (14.40)
are valid in this case, too.

The ferromagnetic resonance in metal with anomalous skin effect was also in-
vestigated in [167] for the case of normal magnetization. The expression for A H,,
when the exchange contribution dominates, differs from the estimate (14.34) only
by a factor of the order of unity. The case of tangential magnetization with the
anomalous skin effect was studied by Blank and Kaganov [50].

Thus, the contribution of the exchange interaction (together with conductiv-
ity) to the ferromagnetic-resonance linewidth and the resonance-field shift are
of the same order and are proportional (if they dominate) to the square root of
frequency. Meanwhile, the contribution of magnetic losses to AH in metals is
usually proportional to w, as the dissipation parameter a is approximately in-
dependent of frequency. Therefore, the advantageous conditions for observing
the exchange contribution are low frequencies and, of course, low temperatures
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FIGURE 14.10
Frequency dependences of ferromagnetic-resonance linewidths at room temperature
[126, 47). AHger = AH/3'/* (Section 1.4).

because the conductivity of metals increases with decreasing frequency. At rather
low frequency (however, at room temperature) the exchange contribution was first
observed by Rado and Weertman [325].

Estimates, with the use of (14.39) and the data of Table 14.1, show that the
frequency at which the magnetic and the exchange contributions to AH at room
temperature become comparable is equal to ~ 300 GHz for Fe and to ~ 1 GHz, for
Ni. For these metals, at microwave frequencies and room temperature, the limiting
cases are realized when either one or the other contribution dominates. The
exchange contribution also dominates for permalloy and silicon iron. Figure 14.10
gives a good illustration of this: the linewidth is proportional to w for Ni and is
proportional to the square-root of w for Fe and other metals.

14.2.4 Antiresonance

The processing of experimental data on the basis of the strict theory of ferromag-
netic resonance in metals allows the separation of the magnetic contribution to
A H and makes it possible to find the dissipation parameter « even in the case (as
for Fe) when the exchange contribution dominates. But it is obvious that the accu-
racy of such a procedure cannot be high. For a more accurate determination of the
magnetic dissipation parameter the measurement of the antiresonance linewidth
can be used.

Antiresonance point (Section 4.2) is the frequency or steady magnetic field
value at which the real part of the effective permeability pi.r becomes equal to
zero and the imaginary part does not pass through a maximum, as distinct from
resonance, but passes through a minimum. The condition of antiresonance (4.59)
does not depend on the angle between the direction of magnetization and the
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Hgq(kOe)

FIGURE 14.11
Effective permeability of supermalloy vs steady magnetic field for tangential magnetiza-
tion [449].

direction of the wave propagation. One can see from (4.59) that antiresonance can
be observed only at w > wyy, e.g., for Fe, at w/(27) 2 60 GHz. It can be shown
that, to a first approximation (for small losses), the imaginary part of the effective
permeability at antiresonance is

aw

" _ oW
('uef)amjres - Wy (14.41)

for any direction of magnetization. The antiresonance linewidth A H e can be
defined as the interval between w or Ho points at which pgt = 2 (pg), . . It
is easy to make sure that, independently of the magnetization direction, A Hniires
coincides, to a first approximation, with the resonance linewidth AH = aw/~.

Expressions (4.59) and (14.41) have been obtained without allowance for ex-
change interaction. However, the skin depth, according to (4.39), becomes large
near antiresonance, and there is no need to take into account the exchange in-
teraction. Thus, measuring the parameters of an electromagnetic system with a
metallic sample near antiresonance, we can determine independently the magnetic
dissipation parameter «.

The absorption minimum at antiresonance was first observed by Yager [449)]
(Figure 14.11). Simultaneous measurements of the linewidth at resonance and
at antiresonance were used [124] to determine the values of a and the pinning
parameter . The simultaneous measurements of the resonance and antiresonance
magnetic fields allowed one to obtain precise values of magnetization [324] and
g-factor [123].

The increase of the skin depth at antiresonance results in a great increase of the
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FIGURE 14.12

Calculated field dependences of the real part of the surface impedance for tangen-
tially magnetized metal films of different thickness d [92). w = 1.5wum, a = 1074,
D/ (4nMo6}) = 5 x 107>, numbers by the curves are the values of d/é;. © 1974 Jpn. J.
Appl. Phys.

power percolating through a film of ferromagnetic metal. This effect was predicted
by Kaganov [196]. It was observed first by Heinrich and Meshcherjakov [177]
and later on, by others (e.g., [77]).

It should be noted that, if the thickness of the ilm is comparable with the skin
depth, then the calculation of the percolation through the film, as well as of the
reflection from it (determined by the surface impedance), demands the regard for
the boundary conditions at both sides of the film. In general, the electrodynamic
and the exchange boundary conditions must be taken into account; but near an-
tiresonance there is no need for the latter. The results of such calculations carried
out by De Wames and Wolfram [92] are shown in Figure 14.12. The symmetric
excitation, i.e., the excitation by the same ac field at both sides of the film, was
assumed. One can see from this figure that the influence of the pinning param-
eter becomes stronger with diminishing film thickness. In the case of £ = oo,
sharp peaks caused by ‘space quantization’ are superimposed onto the dependence
¢! (Hp) that is characteristic of an infinite metal.

14.2.5 Processes of magnetic relaxation

The measurements of magnetic dissipation parameter « in metals show that this
parameter is practically independent of frequency. Its dependence on temperature
is usually weak in perfect samples. Let us discuss now what relaxation processes
determine this parameter.

All processes investigated in Chapters 11-13 can exist in metals. In addition,

the process in which the conduction electrons are involved can be present. The
contributions of inherent magnon processes (Section 11.2) to A H in metals should
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be of the same order as in dielectrics or semiconductors (ferrites), i.e., of the order
of 0.1 Oe. At the same time, the linewidths even in perfect metallic samples
turn out to be several tens of oersteds. So, the intrinsic magnon processes do
not play any noticeable role in metals. Two-magnon processes caused by defects
(Section 11.3) are effective in metals because of large steady magnetization. They
lead to high A H values in ‘bad’ samples, e.g., in samples with not sufficiently well
polished surfaces. The two-magnon processes caused by nonuniform anisotropy
fields are effective in polycrystals. The contributions of two-magnon processes
caused by nonuniform elastic stresses are large in poorly annealed samples. But
if proper attention is paid to the quality of samples, as in all good works on
ferromagnetic resonance in metals, the contributions of all two-magnon processes
are small.

The ionic relaxation processes (Section 13.2) can also play an important role in
metals, especially at low temperatures. It is conceivable that the sharp rise of AH
in Ni at low temperature and high A H values in Co [48] result from this process.
However, it is obvious that rather high AH values in all ferromagnetic metals,
which weakly depend on frequency and temperature, should be caused mainly by
the electron—magnon processes.

To realize these processes we consider, following Turov [409], the interaction
between the charge carriers (electrons) and the magnetic system of a ferromagnet.
Electrons are characterized by the operators of orbital impulse $ and spin 8. The
magnetic system is characterized by the magnetization M. Then, the Hamiltonian
of the interaction of an electron with the magnetic system will have the form [409]

- I
Hi = —2upAp ~ up H3 — 25— M3 (14.42)
0]

where pp = |eo|h/(2m.c) is the Bohr magneton, A is the vector potential of
the electromagnetic field, and I is the exchange integral that characterizes the
interaction of carriers (s electrons) with the magnetic system.

All the above-studied effects caused by the interaction of magnetic oscillations
and waves with charge carriers resulted from the first term in (14.42). Now we
will briefly consider the phenomena determined by the other two terms, i.e., by
the interaction of the magnetic system with spins of the conduction electrons. The
energy of this interaction can be written in the form

U= Z Aw* (T,S)',’:{’ll)(r,s)dv (14.43)

s=+1/2

where (7, s) is the wave function of the conduction electrons, H is the sum of
the last two terms in (14.42), and integration is over the volume of the sample. We
substitute the last two terms of , into (14.43), pass from P(r,s) and ¥*(r, s) to
the operators B;;s and l;q s of creation and annihilation of electrons with impulse
P = hq and spin s, and express M in terms of the operators & and é of the
magnon creation and annihilation (Section 7.4). Then, the energy U will contain
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Elementary processes with conservation of the total spin, which underlie the three-particle
and four-particle magnon relaxation processes. Straight lines denote magnons, and wavy
lines denote conduction electrons.

terms of different order with products of operators bq o bq s c,c , and ék.

The quadratic terms containing the products b,, sbq s give the correction to the
energy of the carriers caused by their interaction with the magnetic system. The
terms of third, fourth, and higher order in bqs, bqs, ck , and & correspond to
the elementary processes of creation and annihilation of electrons and magnons.
These elementary processes underlie the magnon relaxation processes resulting
from the interaction of magnons with the spins of charge carriers. In such low-
energy processes, electrons cannot arise or annihilate, only their ¢ and s values
change. Hence, the operators b+ and bq s appear only in pairs. It is very
important that the sd (or sf) exchange interaction, like the exchange interaction
within the magnetic system (Section 11.2), leads only to processes in which the
total spin of the interacting particles is conserved. The elementary processes that
satisfy this condition are shown in Figure 14.13. The three-particle processes
are, in general, more probable. But they are forbidden if the turn-over of the
conduction-electron spin is connected with the increase of the electron energy by
a value exceeding the energy of the relaxing magnon. Then, the main contribution
to the magnon relaxation will be made by the four-particle process. This is the case
for ferromagnetic metals where the mentioned increase of the s electron energy,
i.e., the sd exchange splitting of the conduction band, is of the order of 1 eV.

The magnon relaxation frequency determined by such four-particle elementary
processes, without turn-over of the electron spin, was calculated by Lutovinov and

Reizer [262]:
P U T (14.44)
"7 64 \Spr/) YDpi hw ’

where S is the spin of magnetic ions, pr = hkg is the Fermi impulse of electrons,
w is the magnon frequency, and k is the magnon wave number. In ferromagnetic
resonance the k value is of the order of §~!, where § is the skin depth depending,
in its turn, on AH. Assuming the considered process to be the dominant one, it is
easy to obtain, by the same method as used in deriving expression (14.31),

V3r hw [T 4rMpo . kT

> TSR FH I (14.45)

AH =
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One can see from (14.45) that the linewidth is approximately proportional to
w and (if the temperature dependences of My and o are taken into account)
weakly depends on temperature. Both the above-mentioned features agree with
experiment. Estimates using (14.45) are also in agreement with the experimental
AH values in metals.

It should be noted that spin waves propagating in metal along its surface cannot
be excited linearly by the ac field of a resonator or a wavequide because the
wavelength of this field is much larger than 1/k of the spin waves. But pairs of
such spin waves can be excited parametrically (Chapter 10), as it was observed in
thin films [79, 46] and thin wires [234].







Appendix A

Units and constants

The CGS (Gaussian) units are used in this book. The relations between them and
the SI units are given in Table A.1. The table includes only the quantities, with
few exceptions, that appear in the text.

The energy of particles and quasiparticles is often measured in special units,
which are defined in the following manner.

The electronvolt is the energy |eo|V obtained by an electron in passing the
potential difference V =1 V.

The inverse centimeter is the energy quantum 27/c/ A of electromagnetic radi-
ation with the wavelength in vacuum A = 1 cm.

The kelvin is the mean energy «T per two degrees of freedom of an ideal gas
at temperature 7' = 1 K.

The oersted is the energy equal to the Zeeman splitting vAH = gupH of
electron energy levels, with g-factor g; = 2.0023, in magnetic field H = 1 Qe.

Values of these units and the relations between them are given in Table A.2.
Energy, especially thermal, is also measured in calories: 1 cal = 4.1868x 107 erg.

Values of the fundamental physical constants, which could be used in calcula-
tions on the subjects of this book, are given in Table A.3.
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TABLE A.2
Special energy units. The numbers in the table (analogous to the factor K in Table A.1)
are the ratios of units in appropriate rows to units in appropriate columns.

Electron charge

€0

—4.80321x1071°

Electron mass at rest me 9.10939x 10~
Electron specific charge eo/me —5.27281x 10"

Proton mass at rest m, = 1836 m, 1.67262x 107
Neutron mass at rest My = 1839 m, 1.67493%x107%

Atomic mass unit mo = m(2C)/12 1.66054x 10~ 2
Avogadro number Na = 1/my 6.02214x 107

Planck constant h=h/(2m) 1.05457x 10~
Fine-structure constant a = e}/ (hc) 7.29735x 1073 = 1/137

Bohr radius
Electron-spin g-factor

Bohr magneton
Electron-spin
gyromagnetic ratio
Nuclear magneton
Proton magnetic moment
Neutron magnetic

ap = R’ /(meey)

gs = 2[1 + a/(2r)
~0.32807 /%)

s = leo|h/(2mec)

vs = gsleol/(2mec)

=gsus/h
pn = leolR/(2mpc)
M, = 2.79285 s

5.29177x107°

2.002319
9.27402x 10~2!

1.76086x 107
5.05079x 10~%
1.41061x 10~%

moment M, = 1.91304 9.66237x 10~
Magnetic flux quantum &y = whe/leo| 2.06783x 107’
Boltzmann constant K 1.38066x 101
Constant of gravitation G 6.67259x 1078
Standard acceleration

of gravity Gnorm 9.80665x 10°

Electron- Inverse
volt centimeter Kelvin Oersted
Unit Erg eV) (ecm™h (K) (Oe)
Erg 1 6.2415x 10" 5.0341x 10" 7.2429% 10" 5.3852x 10"
Electronvolt 1.6022x107'2 1 8.0655x10° 1.1604x10* 8.6280x 10’
Inverse
centimeter 1.9864x 10" 1.2398x 107 1 1.4388 1.0697 x 10*
Kelvin 1.3807x 107'® 8.6174x 10~ 0.69504 1 7.4351 x 10°
Oersted 1.8570x 1072 1.1590% 107% 9.3481x10™° 1.3450x 10™* 1
TABLE A.3
Values of some fundamental physical constants [78].
Notation and relation Value
Constant to other constants in CGS system
Velocity of light
in vacuum c 2.997925% 10"







Appendix B

Demagnetization factors

The demagnetization factors N, , . (Section 1.5) of an ellipsoid with axes a, b,
and ¢ (a > b > c) placed in a medium with pz = 1 are determined (e.g., [131]) by
the expression

* dt
/o (a2 + ) /(a2 +1) (B2 +1) (2 + 1)
and analogous expressions for N, and N.. The curves of N, ; . vs the ratios of

the ellipsoid axes, calculated by Osborn [306], are plotted in Figures B.1, B.2,
and B.3.

N, =2rabc

(B.1)

0.3

0.2
&
=

0.1

7 02
bla=0.1 ; :
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0
cla
FIGURE B.1

Demagnetization factors of an ellipsoid in the direction of the larger axis [306).
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Demagnetization factors of an ellipsoid in the direction of the middle axis [306].



399

a>52c
02
N 03
. \ \K\ 04
% Q\\\ R
2. %\§\ 05 |
NN
AU 07
NN 08 09
bla=0.1 — T bla=1
0.4 S a
ble=1 TS ,
03
02 ; :
0 01 02 03 04 05 06 07 08 09 10
cla
FIGURE B.3

Demagnetization factors of an ellipsoid in the direction of the smaller axis [306].

For an ellipsoid of revolution (spheroid), rather simple formulae [321] follow
from (B.1): in the case of @ > b = ¢ (prolate spheroid),

1= /1 1+¢
Na =4r 52 (E In m — 1) (BZ)

and in the case of a = b > ¢ (oblate spheroid),

_ g2
N, = 47r1 €2§ (1 - %arctanf) (B.3)

where £ = Va? — ¢?/a in both cases.







Appendix C

Dirac delta function and Kronecker delta symbol

The Dirac delta function 6(x) is defined as (e.g., [243, 84, 336])

6(x):{0atx;60

catx=0

b
/6(:r)da:=1 if a<0<b

(c.1)

It should be noted that é (x) is not a function in the usual sense but a symbolic
or generalized function. The main property of it, which can be regarded as its

definition, is

b
/f(a:)é(x—xo)d:vzf(xo) if a<zg<b

where f (z) is an arbitrary function continuous at x = z.
Some other useful properties of 6 (x) are

6(-z)=46(z)
so that 6 (x) is an even function;

‘ 1
§(Cx) = m(S(ac)

where C is a constant;

z6(z)=0

f@)6(x —x0) = f(20)6 (T — 20)

/6(&—1)6(x—b)dx:6(a—b).

(€2)

(€3)

(c4)

(C.5)

(C6)

(C.7)

The function é (x) can be represented as a limit of sequences of some analytical

functions, e.g.,

sin (kx)
T

@ = lim,

401

(C8)
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or as an integral, e.g.,

1 [t
6(x)= o /_oo exp (ikr) dk. (€9
The delta function can be related by a symbolic expression
6(x) = iU(sz:) (C.10)
dx
to the unit (or step) function
0 at <0
U(x):{ 1 at z>0 (c.11)

(the value of U (x) at z = 0 can be defined, e.g., as 1/2). The derivative of é (z)
can be introduced by

/bf ()8 (x — zo)dx = — f' (x0) if a<zg<b. (C.12)
A three-dimensional delta function is defined as
b(r)y=6@)6W)(2). (C.13)
Its main property is
[£@8 =~ rodr = f o (c.14)

where integration is performed over the entire r space. Extending (C.9), we get
1

6(ry= ——= [ exp(ikr)dk C.15

(r) (2703/’013( ) (C.15)

where integration is carried out over the k space.
The Kronecker delta symbol is defined as

_J O if n#gm
Am"_{l if n=m (C.16)

where m and n are any discrete quantities, €.g., integers, or as

[0 if k#0
A(k)-{l R0 (€.17)

where k is a scalar or a vector, continuous or discrete.
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Coupled-wave approach, 120
Coupling of magnetic modes at high
power level, 245
Creation and annihilation operators
of magnons, 208
of spin deviations, 207
Critical wavelength, 117
Crystal field, 338
Curie constant, 6
Curie law, 6
Curie temperature (point), 1, 7
Curie—Weiss law, 7

Damon-Eshbach wave, 160
Degeneration of uniform oscillations
with spin waves, 149, 183
Demagnetization factors, 23, 397
Demagnetization tensor, 23

INDEX

Detection of magnetization oscilla-
tions, 235
Dimensional effects in ferromag-
netic resonance, 136, 365
Dipole—dipole (magnetic, relativis-
tic) interaction, 2, 38
Hamiltonian, 212
Dirac delta function, 21, 401
Displacement vector, 311
Dissipation parameters, 17, 18
Dissipative terms
Gilbert, 17
Landau-Lifshitz, 17
modified Bloch, 18
Domain structures
bubble, 218
stripe, 217
Domain walls, 215
Bloch, 216
mass, 220
Neel, 217
Domain-wall oscillations
dynamic susceptibility, 220
eigenfrequency, 220
equation of motion, 219
line width, 221
quality factor, 220

Effective demagnetization factors,
35,43
of cubic anisotropy, 47
of uniaxial anisotropy, 44
Effective field, 33
of exchange interaction, 179
of magnetocrystalline aniso-
tropy, 43, 44, 64
Effective permeability, 16, 97
Effective pumping, 275
Elastic force, 311
Elastic waves
in continuum, 313
in discrete crystal lattice, 314
Elastic-stress effect on ferromag-
netic resonance
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magnetostrictive stresses, 318
external stresses, 319
Electrokinetic waves, 370
cyclotron waves, 370
helicons, 370
Electron paramagnetic resonance, 4
Ellipticity, 26
of spin wave, 256
of uniform oscillations, 26, 238
Energy losses, 108
Energy-balance equation, 107
Energy-flow density
elastic (Umov vector), 313
electromagnetic (Poynting vec-
tor), 107, 166
Equations of motion
elastic, 313
magnetoelastic, 317
of domain wall, 219
of magnetization,
in anisotropic ferromagnet
(Landau-Lifshitz equa-
tion), 33
in isotropic ferromagnet, 9
linearized, 11, 18, 24, 34
with dissipative terms, 17
of sublattice magnetizations, 64
Equilibrium magnetization direc-
tions
in anisotropic ferromagnet, 32
cubic, 43
uniaxial, 41
in antiferromagnet, 65, 66, see
also Antiferromagnets
in ferrimagnet, 81, 82
in isotropic ferromagnet
ellipsoid, 23
unbounded, 11
Exchange boundary conditions, 186
for ac magnetization, 188
free spins, 188
perfect pinning, 189
Exchange field, 179
Exchange energy, 7, 33, 338
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Hamiltonian, 7, 206
nonuniform term, 179
of antiferromagnet, 64
Exchange integral, 7
Exchange interaction, 7
anisotropy of, 38
indirect, 7, 63, 373
External susceptibility tensor, 27

Faraday effect
for plane wave, 100, 101
in circular waveguide, 119, 120
Fast relaxation, see Ionic relaxation
Fast-relaxing ions, see Ions with
strong spin—orbital coup-
ling
Fermi surface, 373
Ferrimagnetic resonance, 81, 89
exchange modes, 85, 88, 89
in antiparallel ground state
allowance for shape and
anisotropy, 88, 89
damping, 87
effective parameters, 84, 88
eigenfrequencies, 83
line width, 88
susceptibility, 87
in noncollinear ground state, 86
Ferrimagnets, 59
equilibrium orientations of sub-
lattice magnetizations, 81
Ferrite microwave devices
circulator, 122
Faraday-type, 121
field-displacement-type, 129
filter, 142
isolator, 122
modulator, 122
nonlinear devices, 279
phase shifter, 122
resonance-type, 128
Ferrite parametric amplifier, 267
Ferrite resonator, see Magnetody-
namic oscillations
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Ferrites with
garnet structure, 62
hexagonal structure, 62
spinel structure, 61
Ferromagnetic resonance, 13
in a film, 50
of cubic ferromagnet, 51
in a small ellipsoid
eigenfrequency, 24
external susceptibility, 27
line width, 28
losses, 26
polarization, 26
in a sphere of anisotropic ferro-
magnet
cubic, 47
uniaxial, 45
in polycrystals, 53
in the presence of domains, 222
ellipsoid of uniaxial ferro-
magnet, 224
sphere of cubic ferromagnet,
226
influence of sample dimen-
sions, 136, 365
measurement, 138
Ferromagnetic resonance in bulk
metal
nonexchange theory, 375
normal magnetization, 377
tangential magnetization,
377
self-consistent estimate of ex-
change influence, 378
theory allowing for exchange,
380
anomalous skin-effect, 383
effect of pinning-parameter,
383
normal magnetization, 383
tangential magnetization,
381
Field-displacement effect, 127
Filter (microwave, ferrite), 140, 142

INDEX

filter-circulator, 142
Fine-structure constant, 3, 395
Four-magnon scattering, 288, 294,

298
Free-energy density

elastic, 312, 313

magnetoelastic, 315, 316

of ferromagnet, 32

of ions, 342
Frequency doubling, 236, 238

using magnetocrystalline

anisotropy, 239
using magnetodynamic oscilla-
tions, 239
Frequency mixing, 242

g-factor, see Spectroscopic splitting
factor
Group velocity
nonexchange magnetostatic
waves in films, 154, 156,
161
spin waves, 182
Growth anisotropy, 51
Gyromagnetic ratio, 3, 10, 33
Gyrotropy, 12

‘Hard’ parametric excitation of spin
waves, 278
Harmonic generation
second harmonic, 236, 238, see
also Frequency doubling
third harmonic, 241
Heisenberg model, 8, 205
diagonalization of the Hamilto-
nian, 206
High-frequency approximation, 290,
291
High-temperature approximation,
290, 294
Holstein—Primakoff transforma-
tions, 206, 213
Hooke law, 312
Hydrodynamic approximation, 368
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Impedance
surface (of metal), 377, 381
wave, 99, 102
Independent-grain (region) approxi-
mation, 54, 56, 300
Induced anisotropy, 366, 367
by light, 366
Induction electric field at ferromag-
netic resonance, 364
Instability of ferromagnetic reso-
nance in strong ac field
caused by
magnetocrystalline anisotropy,
234
shape anisotropy, 233
Interaction of magnons, 214
Internal magnetic (dipole) field of
magnetization wave, 181,
189
Internal magnetic energy, 34, 65
Ionic anisotropy
experimental data
3dionsin YIG and spinel fer-
rites, 345
4f jons in YIG, 344
chromium ions in ferromag-
nets, 345
one-ion theory, 342
low-lying doublet, 342
near-crossing levels, 343
Ionic relaxation, 347
experimental data
3d ions in garnets and
spinels, 360
4f ions in garnets, 358
in metals, 386
longitudinal (slow), 347, 349,
355
case of two energy levels,
354
Clogston theory, 350
dynamic anisotropy, 352
frequency and temperature
dependences of line
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width, 355
Hartmann—Boutron theory,
354
relaxation of ionic-level popu-
lations, 356
transverse, 347, 349, 360
Kittel fast-relaxation theory,
348
Van Vleck theory, 349
Tons with strong spin—orbital cou-
pling, 337
contribution to anisotropy, 337,
see also Tonic anisotropy
contribution to line width, 347,
see also Tonic relaxation
free energy, 342
splitting of energy levels, 337
3d ions, 338, 339
4f ions, 339, 342
Isolator, 122
Faraday-type, 122
field-displacement, 129
resonance, 128

Kasuya-Le Craw processes
magnon-magnon, 295
magnon-phonon, 296, 335

Kerr effect, 102

Kinetic equation (for numbers of

quasiparticles), 287, 292

Kronecker delta symbol, 132, 402

Landé factor, see Spectroscopic
splitting factor
Landau-Lifshitz equation, 33
Limitation of parametric-spin-wave
growth above threshold,
271
nonlinear damping, 276
phase mechanism, 274
phase mechanism and nonlin-
ear damping, 277
reaction of spin waves on
pumping, 271
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Line width
antiresonance (in metals), 385
dipole narrowings, 55
exchange narrowings, 302
in ferrimagnets, 88
of antiferromagnetic reso-
nance, 73
of domain-wall oscillations,
221
of ferromagnetic resonance
due to conductivity, 363
due to exchange interaction
and conductivity in met-
als, 383
due to porosity, 56, 306, 308
due to surface roughness,
309
in polycrystals, 35, 306, 308
in single crystals, 28
spin-wave due to
four-magnon scattering, 295,
298
inherent processes in YIG
(experimental data), 297
three-magnon confluence,
293
three-magnon splitting, 291
Lorentz lemma, 104
Lorentz resonance curve, 20

Magnetic dipoles, 2

Magnetic domains, 1, 215

Magnetic gyration vector, 12, 94,

105

Magnetic moment, 3
eigenvalues, 4, 337
elementary, 1, 2

Magnetic spectra, 221

Magnetic susceptibility tensor, 12
circular components, 14, 22
of polycrystal, 53
with losses, 19, 22

Magnetic-flux quantum, 395

Magnetization, 9, 92

INDEX

Magnetization processes
displacement, 218
rotation, 218
Magneto-electrokinetic waves, 370
Magnetoacoustic resonance (MAR),
330
secondary, 330
Magnetocrystalline anisotropy, 31
origins, 37
phenomenological description,
39
antiferromagnets and ferri-
magnets, 64, 81
cubic ferromagnet, 40
uniaxial ferromagnet, 34
Magnetodynamic oscillations, 135
of a ferrite sphere, 136
Magnetoelastic
constants, 315
energy, 315,316
equations of motion, 317
linearized, 320
gap, 318
peaks on ‘butterfly’ curve, 326,
329
Magnetoelastic waves, 319
damping, 323
excitation, 323
in a thin plate by ac magnetic
field, 324
parametric excitation, 326, 330
propagating parallel to steady
magnetization, 320
propagating perpendicularly to
steady magnetization, 322
transformation in nonuniform
steady magnetic field, 324
Magnetostatic approximations
first (for electric field), 147, 166
limits of validity, 152
zero, 147, 148
Magnetostatic equations, 93
Magnetostatic nonexchange waves,
148
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applications, 170
energy flow, 166
excitation, 168
in anisotropic ferromagnet, 150
in plates (films), 153, 170
backward volume, 155
forward volume, 153
surface, 159, 161, see also
Surface magnetostatic
waves
in the presence of domains, 230
in waveguides with finite cross
section
film of small width, 165
metallized rectangular rod,
163
round rod, 164
losses, 167
Magnetostatic potential, 132, 149
Magnetostriction, 315
constants, 316
Magnon dispersion law
classical (small-k) limit, 183,
see also Spin waves
quantum-mechanical, 209
cubic spin lattices, 209
Magnons, 199
numbers of, 200
spin and magnetic moment, 203
statistics, 203
thermal, 202
contribution to heat capacity,
205
contribution to temperature
dependence of magnetiza-
tion, 203, 212
time of life, 185, 202, 214
Material equations, 92
Maxwell equations, 91
for complex amplitudes of ac
quantities, 93
Measurement of
7 components and ¢ of ferrites,
137
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anisotropy constants, 43
ferromagnetic-resonance
parameters, 138
threshold field (longitudial
pumping), 257
Moduli of elasticity, 312
cubic crystal, 312
isotropic medium, 313
Molecular field, 6, 211
Moment of momentum, 2
eigenvalues, 2
Monodomain particles, 218
Morin temperature (point), 60

Narrowing of resonance line
dipole, 55, 307
exchange, 302
Natural ferromagnetic resonance,
226, 229
Polder—Smit formula, 229
Near-crossing of energy levels, 341,
343
H, peaks at, 344
Nearest-neighbor approximation,
209
Neel temperature of
antiferromagnet, 60, 66
ferrimagnet, 66
Nonlinear ferrite microwave devices
power limiter, 279
filter-limiter, 280
small-signal suppressor (signal-
to-noise-ratio
enhancer), 280
Nonlinear ferromagnetic resonance
in an ellipsoid of revolution,
232
in a sphere, 231
Nonlinear magnetization oscilla-
tions, methods of approx-
imate analysis using
condition of magnetization-
vector-length conserva-
tion, 234




442

recurrent equations for magne-
tization terms, 236
Nonlinear shift of spin-wave fre-
quency, 250, 275
Nonreciprocal waveguide junctions
matrix approach, 143
three-port, 145
two-port, 144
Nonreciprocity, 104
in circular waveguide with lon-
gitudinally magnetized
ferrite, 119
in rectangular waveguide with
transversely magnetized
ferrite, 126
Nonuniform exchange constant,
180, 204, 210
Nonuniform magnetostatic oscilla-
tions, 170
coupling of modes, 177, 300
excitation, 176
in antiferromagnet, 178
in ellipsoid of revolution, 175
in metallized cylinder, 171
in a sphere, 171
in samples with domains, 229
orthogonality relations, 176
Number-of-magnons operator, 208

One-ion anisotropy, 38, 342
Onsager principle, 106
Overlapping integral, 263

Parallel (Iongitudinal) pumping, see
Parametric excitation of
spin waves

Paramagnetic magnetization, 4

Paramagnetic susceptibility of

antiferromagnet, 66
ferrimagnet, 66
ferromagnet, 5

Parametric excitation of

magnetic and elastic modes,
caused by magnetoelastic
nonlinearity, 329

INDEX

magnetoelastic waves under
elastic pumping, 330
magnetic pumping, 326
nonexchange magnetostatic
waves, 264
Walker modes, 263
Parametric excitation of spin waves,
245
under longitudinal (parallel)
pumping, 246, 255
critical magnetic field, 256
effect of magnetocrystalline
anisotropy, 258
effect of nonuniformities,
259
in thin films, 266
measurements, 257
spin-wave parameters, 256,
257
threshold ac field, 256
under nonuniform pumping
by a running wave, 269
by surface magnetostatic
wave in a film, 269
local, 268
under oblique pumping, 261
in unsaturated samples, 262
under transverse pumping, 246
Suhl theory, 246
first-order threshold, 250
second-order threshold, 251
Permeability tensor, 14
anisotropic ferromagnet, 43
designation of components, 94
isotropic ferromagnet, 15
with losses, 22
with exchange interaction, 180
Permittivity, 94
in the presence of drifting car-
riers, 368
Perturbation
lemmas, 109
of a resonator, 111
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cylindrical with ferrite
sphere, 137
with ferromagnetic-metal
wall, 114
of a waveguide, 110
circular with ferrite rod, 120
quasistatic approximation of in-
ternal field, 111, 113
Phase shifter, 122
latching, 130
Reggia-Spencer, 123
‘Physical’ region (of spin-deviation
space), 207
Pinning parameter, 188
Plank constant, 3, 395
Polder tensor, see Magnetic suscep-
tibility tensor
Poynting vector, 108, 166
Propagating spin waves in films, 194
dispersion characteristics, 196
ways of theoretical treatment,
194
Psevdodipole interaction, 38

Quality factor, 27
of domain-wall oscillations,
220
of small ferromagnetic ellip-
soid, 27

Rectangular waveguide with trans-
versely magnetized ferrite
completely filled, 123
with ferrite plate, 125
Relaxation frequency, 287
Relaxation processes in metals, 386
electron—-magnon, 387
four-particle, 388
exchange-conductivity, 383
ionic, 386
magnon-magnon, 386
two-magnon, 386
Relaxation processes, methods
of study
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coupled equations of motion,
285
transition probability, 285
Relaxation processes near Curie
temperature, 310
Relaxation time, 287
Resonators with ferrite
cylindrical with ferrite sphere,
137
eigenoscillations, 131
forced oscillations, 131
use in measurements
of 1z components and e of
ferrites, 137
of ferromagnetic-resonance
parameters, 138
waveguide resonators, 133
Ruderman-Kittel-Kasuya—lIosida
(RKKI) interaction, 373

Saturation of main resonance, 254

Scattering matrix of waveguide junc-
tion, 143

Secondary quantization, 207

Self-consistent field acting on a fer-
rite sample in waveguide,
139

Self-oscillations above spin-wave-
instability threshold, 279

Shape anisotropy, 31

Skin depth, 98, 363, 373

Skin effect

anomalous, 379, 383
normal, 98

Slow branches, 100, 103, 147, 162

Slow relaxation, see Ionic relaxation

Smearing out of spin-wave-
instability threshold, 274

Smit-Suhl formula, 36

Soft mode, 74, 86, 90

Space dispersion, 181

Spectroscopic splitting factor, 3, 4,
10,33

electron-spin, 3, 395
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Spherical-coordinate method, 35
Spin waves
damping, 184
dispersion law in anisotropic
ferromagnet, 183
dispersion law in isotropic fer-
romagnet, 180
classical (continuum),
180, 182
degeneration with uniform
oscillations, 149, 183
phase velocity, 181
quantum-mechanical, 209,
see also Magnon disper-
sion law
excitation in nonuniform steady
magnetic field, 198
in films, 189, see also Stand-
ing spin waves in films and
Propagating spin waves in
films
in films of small width, 197
in metals, 380
in samples of finite dimensions,
197
in the presence of domains, 229
parametric excitation, 245, see
also Parametric excitation
of spin waves
polarization, 184
Spin-lattice relaxation pro-
cesses, 284, 331
direct, 331
Cherenkov, 333
phonon Kasuya-Le Craw,
296, 335
two-magnon confluence, 333
indirect
caused by charge carriers,
363, see also Charge-
carrier effects in ferromag-
netic resonance
ionic, 347, see also Ionic re-
laxation

INDEX

Spin-spin relaxation processes, 283
experimental data for paramet-
ric magnons, 297, 299
in yttrium iron garnet, 297
inherent, in ferrites, 288, see
also Three-magnon relax-
ation processes and Four-
magnon scattering
inherent, in metals, 386
two-magnon, 299, see also
Two-magnon relaxation
processes
Spin-flop transition, 69
Spin-stiffness constant, see Nonuni-
form exchange constant
Spin-wave instabilities, see Paramet-
ric excitation of spin
waves
Spin-wave resonance (SWR), see
Standing spin waves
in films
Splitting of low-lying doublet, 341
Spontaneous magnetization, 1, 7
Stability of above-threshold state
external and internal, 278, 279
Standing spin waves in films, 189
excitation by uniform ac field,
192
hyperbolic modes, 191
in normally magnetized film,
189
in tangentially magnetized film,
193
Strain tensor, 311
Stress tensor, 312
Sublattice model, 63
equations of motion, 64, 67
equilibrium conditions, 65
Subsidiary absorption, 252, 254
Surface impedance, 377, 381
Surface magnetostatic waves, 157
in film of small width, 165
in plates (films) and planar
structures, 159, 161, 162
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Damon-Eshbach, 160

on boundary of ferromagnet
with dielectric, 159
with metal, 157

Thin-film model (of FMR in metals),
374
line width of a metal sphere,
374
Three-halves-power law, 204
Three-magnon relaxation processes,
288
confluence, 288
Kasuya—-Le Craw process,
295
of parametric 7 /2 magnons,
293
participation in M, and | M| re-
laxation, 294
splitting, 288, 289
of magnetostatic-wave
magnons, 297
of parametric 7 /2 magnons,
291
of uniform mode, 290
Threshold ac magnetic fields (under
transverse pumping)
first-order instability, 252
at resonance, 252
off resonance, 252
influence of pumping-field po-
larization, 254
second-order instability, 254
Transducers for magnetostatic
waves, 168, 169
radiation resistance, 170
Transmission and reflection in wave-
guides with small ferrite
samples
infinite waveguide, 139
short-circuited waveguide, 141
two coupled waveguides, 141
Transparency of metal films, 385
Turning surface, 198
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Two-magnon processes, 259, 273,
299
disordered distribution of ions
over lattice sites, 305
general theory, 300
chaotic nonuniformities, 302
large-scale nonuniformities,
303, 308
in metals, 386
0—k processes, 300, 302
pores, 307, 308
roughness of sample surface,
309
variation of crystal-axis direc-
tions, 306, 308
Two-quantum absorption, 241

Uniform plane waves in
gyrotropic dielectric, 97
gyrotropic metal, 98
longitudinally magnetized fer-
rite, 98, 100
transversely magnetized ferrite,
102, 103

Viscosity, magnetic, 366

Walker equation, 150
generalized, 149
in anisotropic ferromagnet, 150
Walker modes, see Nonuniform
magnetostatic oscillations
Waveguides with magnetized ferrite
circular, 118, 119
coaxial, 129
plane (optical), 120
rectangular, 123, 125
Weak ferromagnets, 59, 60, 65
antiferromagnetic resonance,
78
Weiss theory of ferromagnetism, 6

Y-circulator, 145
Yttrium iron garnet, 62, 296, 299

Zeeman energy, 4, 34, 37, 65







