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1 Problem

Discuss the electromagnetic fields of a helical toroidal winding with major radius a and
minor radius b, as shown below, that carries an oscillatory surface current Ke−iωt that has
no azimuthal component. There is no accumulation of charge anywhere, i.e., ∇ · K = 0. It
suffices to consider the limit that ka � 1 where k = ω/c is the wave number and c is the
speed of light.

A physical realization of this winding is shown on the right above, as perhaps first pro-
posed by Corum [1], where two counter windings of N/2 turns are each driven with current
I = 2πaK(ρ = a)e−iωt/N such that the magnetic dipole moment is zero. A complication
in this case is that at the N close crossings of the two windings, there is localized, oscil-
lating charge accumulation due to the capacitance between the nearby wires which leads to
azimuthal variation of the currents in the windings.

2 Solution

2.1 Sheet Currents with No Azimuthal Variation

This solution follows [2], which assumed sheet currents as stated above. See also [3, 4, 5, 6, 7].
We first consider the static limit of sheet currents represented by N turns of steady

current I0 with no azimuthal component. Then, the electric field is zero everywhere, the
magnetic field is zero outside the torus, while inside the torus we use Ampère’s law (in
Gaussian units) to find

Bstatic =

⎧⎪⎨
⎪⎩

2NI0 φ̂/cρ (inside torus),

0 (outside torus),
(1)

where ρ =
√

x2 + y2.

1



The fact that both the static electric and magnetic vanish outside the torus implies that
all multiple moments vanish for a conventional multipole expansion in this region. However,
the vector potential is certainly nonzero inside the torus, so that continuity of the vector
potential at its surface implies that the vector potential is nonzero outside the torus as well.1

To find the vector potential, and the electric and magnetic fields in the case of oscillating
currents in the windings, we follow a method due to Hertz. The electric and magnetic fields
E and B can be derived from the scalar and vector potentials V and A according to

E = −∇V − 1

c

∂A

∂t
, B = ∇ × A, (2)

in Gaussian units. We work in the Lorentz gauge where the potentials satisfy the auxiliary
condition

∇ ·A = −1

c

∂V

∂t
. (3)

The potentials then obey the wave equations

∇2A− 1

c2

∂2A

∂t2
= −4π

c
J, ∇2V − 1

c2

∂2V

∂t2
= −4π�, (4)

where � and J are the charge and current densities of the sources of the waves. Formal
solutions for the (retarded) vector potential have been given by Lorenz,

A(r, t) =
1

c

∫
J(r′, t′ = t − R/c)

R
dVol′, V (r, t) =

∫
�(r′, t′ = t −R/c)

R
dVol′, (5)

where R = |r − r′|.
There is nowhere any accumulation of charge in the present problem, so that � = 0 and

hence the scalar potential V is zero as well. In this case, the Lorentz gauge condition (3)
tells us that

∇ · A = 0, (6)

so that the vector potential can be written as the curl of another vector, which we will call
ZM, the magnetic Hertz vector:2

A = ∇ × ZM. (7)

From the wave equation (4) for the vector potential, we have

∇2A = ∇2(∇ × ZM) = ∇ ×∇2ZM =
1

c2

∂2A

∂t2
− 4π

c
J = ∇ × 1

c2

∂2ZM

∂t2
− 4π

c
J (8)

If we write the current density as
J = c∇ × M, (9)

in terms of a magnetization density M, the magnetic Hertz vector satisfies the wave equation

∇2ZM − 1

c2

∂2ZM

∂t2
= −4πM. (10)

1Aharonov and Bohm [8] have discussed quantum phenomena in the regions of zero magnetic field but
nonzero vector potential.

2For additional discussion of electric and magnetic Hertz vectors and scalars, see the Appendix of [9].
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This justifies the alternative terminology that the magnetic Hertz vector is a polarization
potential, with the formal solution

ZM(r, t) =
∫

M(r′, t′ = t − R/c)

R
dVol′. (11)

If we regard the static magnetic field (1) inside the torus as due to a magnetization
density M rather than a conduction current density J or K, then H = B− 4πM = 0, so the
required magnetization is

Mstatic =
Bstatic

4π
=

⎧⎪⎨
⎪⎩

NI0 φ̂/2πcρ (inside torus),

0 (outside torus).
(12)

In the case of an oscillating current I0e
−iωt, the equivalent oscillating magnetization is

M(ρ, t) = Mstatic(ρ)e−iωt. (13)

Using this in eq. (11), the magnetic Hertz vector is given by

ZM(r, t) =
∫

Mstatic(ρ
′)ei(kR−ωt)

R
dVol′. (14)

For an approximate solution, we use the relations

R ≈ r − r̂ · r′, 1

R
≈ 1

r

(
1 +

r̂ · r′
r

)
. (15)

Then,3

ZM(r, t) ≈ ei(kr−ωt)

r

∫
Mstatic(ρ

′)e−ikr̂·r′
(

1 +
r′ · r̂

r

)
dVol′

≈ NI0

2πc

ei(kr−ωt)

r

∫
φ′

ρ′

[
1 +

(
1

r
− ik

)
r̂ · r′

]
dVol′ (16)

We evaluate integral (16) for r in spherical coordinates (r, θ, φ) but r′ in cylindrical co-
ordinates (ρ, φ, z), and for an observer at distance r � a from the origin. In rectan-

gular coordinates, r̂ = (sin θ cosφ, sin θ sinφ, cos θ), r′ = (ρ′ cosφ′, ρ′ sinφ′, z′) and φ̂
′

=
− cos φ′ x̂ + sinφ′ ŷ, so that

ZM(r � a, t) ≈ NI0

2πc

ei(kr−ωt)

r

∫ − cos φ′ x̂ + sinφ′ ŷ
ρ′ ×

×
[
1 +

(
1

r
− ik

)
[ρ′(cos φ′ sin θ cos φ + sin φ′ sin θ sinφ) + z′ cos θ]

]
dVol′

=
NI0V

4πc

ei(kr−ωt)

r

(
1

r
− ik

)
sin θ (− cos φ x̂ + sinφ ŷ)

=
NI0V

4πc

ei(kr−ωt)

r

(
1

r
− ik

)
sin θ φ̂, (17)

3Expanding the factor eik·r′ to first order in r′ in the Hertz vector ZM corresponds to expanding this
factor to second order in the vector potential A, which corresponds to keeping (magnetic) quadrupole terms
in the current density distribution.
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where V = 2π2ab2 is the volume of the torus.
The vector potential is

A(r � a, t) = ∇ × ZM ≈ NI0V

4πc

ei(kr−ωt)

r

[
2

(
1

r2
− ik

r

)
cos θ r̂ +

(
1

r2
− ik

r
− k2

)
sin θ θ̂

]
.

(18)
The static vector potential is obtained by setting ω and k to zero,

Astatic(r � a) ≈ NI0V

4πcr3
(2 cos θ r̂ + sin θ θ̂) =

3(mT · r̂)r̂− mT

r3
, (19)

where

mT =
NI0V

4πc
ẑ. (20)

That is, the static vector potential outside the torus has the form of the magnetic field of
a magnetic dipole mT given by eq. (20), although the actual magnetic dipole moment of
the toroidal winding is zero. The quantity mT of eq. (20) has been called the toroid dipole
moment [5] because if this moment oscillates it generates an electric field formally similar to
that of an oscillating electric dipole (see eq. (21)). However, the moment (20) is the result
of weighting the current density J by two powers of distance, rather than by one, and so is
an aspect of the magnetic quadrupole moment of the current density.

The electric and magnetic fields outside the torus are

E(r � a, t) = −1

c

∂A

∂t
= ikA

≈ ik
NI0V

4πc

ei(kr−ωt)

r

[
2

(
1

r2
− ik

r

)
cos θ r̂ +

(
1

r2
− ik

r
− k2

)
sin θ θ̂

]

= ik3 ei(kr−ωt)

r
(r̂ × mT ) × r̂ + (ik + k2r)ei(kr−ωt)3(mT · r̂)r̂ − mT

r3
, (21)

B(r � a, t) = ∇ × A ≈ ik
NI0V

4πc

ei(kr−ωt)

r

(
− ik

r
− k2

)
sin θ φ̂

= ik3
(
1 − 1

ikr

)
ei(kr−ωt)

r
r̂ × mT . (22)

Both E and B vanish outside the torus in the static limit k = 0. The radiation fields are

Erad,θ = Brad,φ = −ik3NI0V

4πc

ei(kr−ωt)

r
sin θ. (23)

The fields (21)-(22) have the same form as those for a small oscillating electric dipole, except
that they are multiplied by an additional factor of k. And indeed, in a systematic multipole
expansion of the sources of vector electromagnetic fields (see, for example, sec. 9.10 of [10]) an
oscillating magnetization can contribute to the electric dipole moment, but with an additional
factor of k compared to the part of the electric dipole moment due to the electric charge
distribution.
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The time-average radiated power has the angular distribution

dPrad

dΩ
=

1

8πc

(
NI0V k3

4π

)2

sin2 θ, (24)

and the time-average radiated power is

Prad =
1

2
RradI

2
0 , (25)

where the radiation resistance Rrad is given by

Rrad =
1

3c

(
NV k3

4π

)2

=
π2

12c

(
Nk3ab2

)2
=

16π8

3c

(
Nab2

λ3

)2

≈ 1.5 × 106

(
Nab2

λ3

)2

Ω. (26)

For example, if a = λ/10, b = λ/100 and N ≈ 580 turns, then Rrad = 50Ω.
Of course, the inductance L of such a winding is high. In SI units, the inductance is

L =
μ0N

2b2

2πa
. (27)

For the above example, L ≈ 0.007 b henries for b in meters.

2.2 Counter-Wound Helical Toroidal Antenna

We give only a qualitative discussion of the counter-wound helical toroidal antenna, using
the case that N = 8 as an example.

As shown in the sketch below, the 8 = 2×4 turns can be thought of as forming 8 elongated
loops, each of which is formed from a half turn of each of the two counter windings, indicated
as diamonds on the left part of the figure. We suppose that the wires of the two windings
pass so close to one another that the capacitance of the 8 crossing points of the two windings
is very large. Then, there exist resonant frequencies at which the direction of the current in
each winding reverses at each crossing point, and the toroid dipole moment (20) vanishes.
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Each of these loops has a magnetic moment mj that is perpendicular to the plane of each
loop, and which lies in the x-y plane, as shown on the right part of the figure.

At each of the 8 crossing points of the wires there is a large capacitance, and a corre-
sponding electric dipole moment pj that points towards (or away from) the center of the
toroid.

All electric and magnetic multipole moments of order less than N vanish, so the radiation
from the system is highly suppressed.

For an observer on the z axis, above the center of the antenna, the radiation electric field
vectors from the 8 magnetic moments mj and from the 8 electric dipole moments pj are
parallel to the x-y plane. The sum of the radiation electric fields is zero, and hence, there is
no radiation along the z axis.

An observer in the x-y plane sees very small electric field from the 8 electric dipole
moments, while the electric field from the 8 magnetic moments sums to a nonzero vertical
component.

The overall pattern of the radiation electric field is that it is largest, and approximately
independent of azimuth, in the x-y plane, while vanishing along the z direction. This is the
qualitative character of electric dipole radiation from an oscillating dipole moment directed
along the z-axis. However, it is ironic that when a counter-wound helical toroidal antenna
is operated at resonance, the toroid dipole moment vanishes, and this exotic antenna con-
figuration reduces to a circular array of “ordinary” electric and magnetic dipoles.

There exist some analytic studies in the literature for the case of small N [12, 13], but
some of their conclusion are at odds with the present analysis.

A Appendix: The Chu Limit

One design goal of small antennas is a large bandwidth. In classic papers, Wheeler [15] and
Chu [16] noted that there is a limit to the bandwidth of an antenna that fits inside a sphere
of radius R � λ that can be expressed as a lower limit on the Q of the antenna,

Q =
ω 〈Unear〉
〈Prad〉

>∼
1

4(kR)3
, (28)

where 〈Unear〉 is the time-averaged energy stored in the non-propagating near electromagnetic
fields of the antenna and 〈Prad〉 is the time-average radiated power. See also [17]. The bound
(28) is closely approached by a small linear dipole antenna of half-height R.

This argument is based on a decomposition of the fields of the antenna into multipole
moments. Since the counter-wound helical toroidal antenna has no nonzero electric or mag-
netic multipole moments of the usual sort, it could be that this type of antenna can have
a Q smaller than the limit of eq. (28). We saw in sec. 2.1 that the fields outside the wind-
ings of a small counter-wound helical toroidal antenna are essentially the same as those of a
small electric dipole antenna. Hence, the part of Q of a small counter-wound helical toroidal
antenna associated with the fields outside the windings is essentially the same as that of a
small electric dipole antenna, and therefore satisfies the bound (28). However, 〈Unear〉 also
includes the energy stored inside the windings,

〈Uinside〉 =
1

2
LI2

0 , (29)
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where L = 2πN2b2/c2a in Gaussian units. This energy is much larger than that stored in
the near fields outside the windings. Then, recalling eqs. (25)-(26),

Q ≈ ωL

Rrad

= ω
2πN2b2

c2a

12c

π2N2a2b4k6
=

24

πk5a2b3
� 1

4(ka)3
. (30)

Thus, a small counterwound helical toroidal antenna is a high-Q device and does not come
close to satisfying the Chu limit.

References

[1] J.F. Corum, Toroidal Helix Antenna, IEEE Ant. Prop. Int. Symp. 25, 832 (1987),
http://puhep1.princeton.edu/~mcdonald/examples/EM/corum_ieeeapsis_25_832_87.pdf

[2] N.J. Carron, On the fields of a torus and the role of the vector potential, Am. J. Phys.
63, 717 (1995),
http://puhep1.princeton.edu/~mcdonald/examples/EM/carron_ajp_63_717_95.pdf

[3] V.M. Dubovik and A.A. Cheshkov, Multipole expansion in classical and quantum field
theory and radiation, Sov. J. Part. Nucl. 5, 318 (1975),
http://puhep1.princeton.edu/~mcdonald/examples/EM/dubovik_sjpn_5_318_75.pdf

[4] V.M. Dubovik and L.A. Tosunyan, Toroidal moments in the physics of electromagnetic
and weak interactions, Sov. J. Part. Nucl. 14, 504 (1983),
http://puhep1.princeton.edu/~mcdonald/examples/EM/dubovik_sjpn_14_504_83.pdf

[5] V.M. Dubovik and V.V. Tugushev, Toroid Moments in Electrodynamics and Solid-State
Physics, Phys. Rep. 187, 145 (1990),
http://puhep1.princeton.edu/~mcdonald/examples/EM/dubovik_pr_187_145_90.pdf

[6] G.N. Afanasiev, The electromagnetic fields of solenoids with time dependent currents,
J. Phys. A: Math. Gen. 23, 5755 (1990),
http://puhep1.princeton.edu/~mcdonald/examples/EM/afanasiev_jpa_23_5755_90.pdf

[7] I. Dumitriu and C. Vrejoiu, Some Aspects of Electromagnetic Multipole Expansions,
Rom. Rep. Phys. 60, 423 (2008),
http://puhep1.princeton.edu/~mcdonald/examples/EM/dumuitriu_rrp_60_423_08.pdf

[8] Y. Aharonov and D. Bohm, Significance of Electromagnetic Potentials in the Quantum
Theory, Phys. Rev. 115, 485 (1959),
http://puhep1.princeton.edu/~mcdonald/examples/QM/aharonov_pr_115_485_59.pdf

[9] K.T. McDonald, Radiation in the Near Zone of a Small Loop Antenna (June 7, 2004),
http://puhep1.princeton.edu/~mcdonald/examples/smallloop.pdf

[10] J.D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999).

[11] K.T. McDonald, Electrodynamics Problem Set 8 (2001),
http://puhep1.princeton.edu/~mcdonald/examples/ph501set8.pdf

7



[12] D.B. Miron, A Study of the CTHA Based on Analytical Models, IEEE Trans. Ant.
Prop. 49, 1130 (2001),
http://puhep1.princeton.edu/~mcdonald/examples/EM/miron_ieeetap_49_1130_01.pdf

[13] R.C. Hansen, Fields of the Contrawound Toroidal Helix Antenna, IEEE Trans. Ant.
Prop. 49, 1138 (2001),
http://puhep1.princeton.edu/~mcdonald/examples/EM/hansen_ieeetap_49_1138_01.pdf

[14] K.T. McDonald, Distortionless Transmission Line (Nov. 11, 1996),
http://puhep1.princeton.edu/~mcdonald/examples/distortionless.pdf

[15] H.A. Wheeler, Fundamental Limitations of Small Antennas, Proc. IRE 35, 1479 )1047),
http://puhep1.princeton.edu/~mcdonald/examples/EM/wheeler_pire_35_1479_47.pdf

[16] L.J. Chu, Physical Limitations of Omni-directional Antennas, J. Appl. Phys. 19, 1163
(1948), http://puhep1.princeton.edu/~mcdonald/examples/EM/chu_jap_19_1163_48.pdf

[17] J.S. McLean, A Re-Examination of the Fundamental Limits on the Radiation Q of
Electrically Small Antennas, IEEE Trans. Ant. Prop. 44, 672 (1996),
http://puhep1.princeton.edu/~mcdonald/examples/EM/mclean_ieeetap_44_672_96.pdf

8


